{"title":"Techno-economic analysis of a solar thermophotovoltaic system for a residential building","authors":"Manish Mosalpuri, Fatima Toor, Mark Mba-Wright","doi":"10.1117/1.jpe.14.042404","DOIUrl":null,"url":null,"abstract":"Thermophotovoltaics (TPV) is a technology that converts heat to electricity using a thermal emitter and a matched photovoltaic (PV) cell. TPV is becoming increasingly popular due to its advantages of silent power generation, higher power density (>2.5 W/cm2), reduced cost, no moving parts (thus, low maintenance costs), reaching full power in less time as compared to turbines, operating at high temperatures, and suitability for long-duration energy storage applications. This study conducts a techno-economic analysis (TEA) of a solar energy conversion (using TPV) and storage system (using phase-change materials). We optimize the levelized cost of consumed energy (LCOE) and electricity (LCOEel) using the Nelder-Mead algorithm for four scenarios (as identified in the reference study). These scenarios differ in nominal-weighted average cost of capital (WACCnom), fuel and electricity inflation rate, and capital cost factor (CAPEX) of high-temperature energy storage (HTES), power generation unit (PGU), and PV systems. We perform a sensitivity analysis that predicts a modest decrease in LCOE and LCOEel from the mean values of $0.038/kWh and $0.128/kWh, respectively. We perform a Monte Carlo uncertainty assessment and fit a probability distribution based on input variables’ historical data from the literature. The fitted probability distribution for outputs (mean, the standard deviation in brackets) is LCOE ($/kWh)—general extreme value (0.035, 0.009), and LCOEel ($/kWh)—t (0.132, 0.016). The reduced mean values for the optimized system indicate a massive potential for TPV to be economically feasible; however, the LCOEel is higher than the current average electricity price of $0.124/kWh. The box plot shows that lifetime, PV CAPEX, inflation rate, natural gas price, and WACCnom significantly impact LCOE, and future research focused on them would lead to a better adoption of TPV technology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jpe.14.042404","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermophotovoltaics (TPV) is a technology that converts heat to electricity using a thermal emitter and a matched photovoltaic (PV) cell. TPV is becoming increasingly popular due to its advantages of silent power generation, higher power density (>2.5 W/cm2), reduced cost, no moving parts (thus, low maintenance costs), reaching full power in less time as compared to turbines, operating at high temperatures, and suitability for long-duration energy storage applications. This study conducts a techno-economic analysis (TEA) of a solar energy conversion (using TPV) and storage system (using phase-change materials). We optimize the levelized cost of consumed energy (LCOE) and electricity (LCOEel) using the Nelder-Mead algorithm for four scenarios (as identified in the reference study). These scenarios differ in nominal-weighted average cost of capital (WACCnom), fuel and electricity inflation rate, and capital cost factor (CAPEX) of high-temperature energy storage (HTES), power generation unit (PGU), and PV systems. We perform a sensitivity analysis that predicts a modest decrease in LCOE and LCOEel from the mean values of $0.038/kWh and $0.128/kWh, respectively. We perform a Monte Carlo uncertainty assessment and fit a probability distribution based on input variables’ historical data from the literature. The fitted probability distribution for outputs (mean, the standard deviation in brackets) is LCOE ($/kWh)—general extreme value (0.035, 0.009), and LCOEel ($/kWh)—t (0.132, 0.016). The reduced mean values for the optimized system indicate a massive potential for TPV to be economically feasible; however, the LCOEel is higher than the current average electricity price of $0.124/kWh. The box plot shows that lifetime, PV CAPEX, inflation rate, natural gas price, and WACCnom significantly impact LCOE, and future research focused on them would lead to a better adoption of TPV technology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.