Enhanced segmentation of femoral bone metastasis in CT scans of patients using synthetic data generation with 3D diffusion models

Emile Saillard, Aurélie Levillain, David Mitton, Jean-Baptiste Pialat, Cyrille Confavreux, Hélène Follet, Thomas Grenier
{"title":"Enhanced segmentation of femoral bone metastasis in CT scans of patients using synthetic data generation with 3D diffusion models","authors":"Emile Saillard, Aurélie Levillain, David Mitton, Jean-Baptiste Pialat, Cyrille Confavreux, Hélène Follet, Thomas Grenier","doi":"arxiv-2409.11011","DOIUrl":null,"url":null,"abstract":"Purpose: Bone metastasis have a major impact on the quality of life of\npatients and they are diverse in terms of size and location, making their\nsegmentation complex. Manual segmentation is time-consuming, and expert\nsegmentations are subject to operator variability, which makes obtaining\naccurate and reproducible segmentations of bone metastasis on CT-scans a\nchallenging yet important task to achieve. Materials and Methods: Deep learning\nmethods tackle segmentation tasks efficiently but require large datasets along\nwith expert manual segmentations to generalize on new images. We propose an\nautomated data synthesis pipeline using 3D Denoising Diffusion Probabilistic\nModels (DDPM) to enchance the segmentation of femoral metastasis from CT-scan\nvolumes of patients. We used 29 existing lesions along with 26 healthy femurs\nto create new realistic synthetic metastatic images, and trained a DDPM to\nimprove the diversity and realism of the simulated volumes. We also\ninvestigated the operator variability on manual segmentation. Results: We\ncreated 5675 new volumes, then trained 3D U-Net segmentation models on real and\nsynthetic data to compare segmentation performance, and we evaluated the\nperformance of the models depending on the amount of synthetic data used in\ntraining. Conclusion: Our results showed that segmentation models trained with\nsynthetic data outperformed those trained on real volumes only, and that those\nmodels perform especially well when considering operator variability.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Bone metastasis have a major impact on the quality of life of patients and they are diverse in terms of size and location, making their segmentation complex. Manual segmentation is time-consuming, and expert segmentations are subject to operator variability, which makes obtaining accurate and reproducible segmentations of bone metastasis on CT-scans a challenging yet important task to achieve. Materials and Methods: Deep learning methods tackle segmentation tasks efficiently but require large datasets along with expert manual segmentations to generalize on new images. We propose an automated data synthesis pipeline using 3D Denoising Diffusion Probabilistic Models (DDPM) to enchance the segmentation of femoral metastasis from CT-scan volumes of patients. We used 29 existing lesions along with 26 healthy femurs to create new realistic synthetic metastatic images, and trained a DDPM to improve the diversity and realism of the simulated volumes. We also investigated the operator variability on manual segmentation. Results: We created 5675 new volumes, then trained 3D U-Net segmentation models on real and synthetic data to compare segmentation performance, and we evaluated the performance of the models depending on the amount of synthetic data used in training. Conclusion: Our results showed that segmentation models trained with synthetic data outperformed those trained on real volumes only, and that those models perform especially well when considering operator variability.
利用三维扩散模型生成合成数据,增强患者 CT 扫描中股骨骨转移瘤的分割能力
目的:骨转移瘤对患者的生活质量有重大影响,而且骨转移瘤的大小和位置各不相同,因此对其进行分割非常复杂。人工分割非常耗时,而且专家的分割会受到操作者差异性的影响,因此在 CT 扫描上获得准确且可重复的骨转移瘤分割是一项具有挑战性的重要任务。材料与方法:深度学习方法能高效处理分割任务,但需要大型数据集和专家手动分割才能在新图像上推广。我们提出了一种使用三维去噪扩散概率模型(DDPM)的自动化数据合成管道,以增强对患者 CT 扫描图像中股骨转移灶的分割。我们利用 29 个现有病灶和 26 个健康股骨创建了新的逼真合成转移图像,并训练了 DDPM 以提高模拟体积的多样性和逼真度。我们还研究了操作员手动分割的可变性。结果我们创建了 5675 个新体积,然后在真实数据和合成数据上训练 3D U-Net 分割模型,以比较分割性能。结论我们的结果表明,使用合成数据训练的分割模型优于仅在真实体积上训练的模型,而且在考虑操作者变异性的情况下,这些模型的表现尤为出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信