Compact Implicit Neural Representations for Plane Wave Images

Mathilde Monvoisin, Yuxin Zhang, Diana Mateus
{"title":"Compact Implicit Neural Representations for Plane Wave Images","authors":"Mathilde Monvoisin, Yuxin Zhang, Diana Mateus","doi":"arxiv-2409.11370","DOIUrl":null,"url":null,"abstract":"Ultrafast Plane-Wave (PW) imaging often produces artifacts and shadows that\nvary with insonification angles. We propose a novel approach using Implicit\nNeural Representations (INRs) to compactly encode multi-planar sequences while\npreserving crucial orientation-dependent information. To our knowledge, this is\nthe first application of INRs for PW angular interpolation. Our method employs\na Multi-Layer Perceptron (MLP)-based model with a concise physics-enhanced\nrendering technique. Quantitative evaluations using SSIM, PSNR, and standard\nultrasound metrics, along with qualitative visual assessments, confirm the\neffectiveness of our approach. Additionally, our method demonstrates\nsignificant storage efficiency, with model weights requiring 530 KB compared to\n8 MB for directly storing the 75 PW images, achieving a notable compression\nratio of approximately 15:1.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast Plane-Wave (PW) imaging often produces artifacts and shadows that vary with insonification angles. We propose a novel approach using Implicit Neural Representations (INRs) to compactly encode multi-planar sequences while preserving crucial orientation-dependent information. To our knowledge, this is the first application of INRs for PW angular interpolation. Our method employs a Multi-Layer Perceptron (MLP)-based model with a concise physics-enhanced rendering technique. Quantitative evaluations using SSIM, PSNR, and standard ultrasound metrics, along with qualitative visual assessments, confirm the effectiveness of our approach. Additionally, our method demonstrates significant storage efficiency, with model weights requiring 530 KB compared to 8 MB for directly storing the 75 PW images, achieving a notable compression ratio of approximately 15:1.
平面波图像的紧凑型隐含神经表征
超快平面波(PW)成像经常会产生随电离角变化的伪影和阴影。我们提出了一种使用隐式神经表征(INRs)的新方法,以紧凑编码多平面序列,同时保留与方向相关的关键信息。据我们所知,这是 INRs 在 PW 角度插值中的首次应用。我们的方法采用了基于多层感知器(MLP)的模型和简洁的物理增强渲染技术。使用 SSIM、PSNR 和标准超声指标进行的定量评估以及定性视觉评估证实了我们方法的有效性。此外,我们的方法还具有显著的存储效率,与直接存储 75 幅 PW 图像所需的 8 MB 相比,模型权重仅需 530 KB,实现了约 15:1 的显著压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信