Retinal Vessel Segmentation with Deep Graph and Capsule Reasoning

Xinxu Wei, Xi Lin, Haiyun Liu, Shixuan Zhao, Yongjie Li
{"title":"Retinal Vessel Segmentation with Deep Graph and Capsule Reasoning","authors":"Xinxu Wei, Xi Lin, Haiyun Liu, Shixuan Zhao, Yongjie Li","doi":"arxiv-2409.11508","DOIUrl":null,"url":null,"abstract":"Effective retinal vessel segmentation requires a sophisticated integration of\nglobal contextual awareness and local vessel continuity. To address this\nchallenge, we propose the Graph Capsule Convolution Network (GCC-UNet), which\nmerges capsule convolutions with CNNs to capture both local and global\nfeatures. The Graph Capsule Convolution operator is specifically designed to\nenhance the representation of global context, while the Selective Graph\nAttention Fusion module ensures seamless integration of local and global\ninformation. To further improve vessel continuity, we introduce the Bottleneck\nGraph Attention module, which incorporates Channel-wise and Spatial Graph\nAttention mechanisms. The Multi-Scale Graph Fusion module adeptly combines\nfeatures from various scales. Our approach has been rigorously validated\nthrough experiments on widely used public datasets, with ablation studies\nconfirming the efficacy of each component. Comparative results highlight\nGCC-UNet's superior performance over existing methods, setting a new benchmark\nin retinal vessel segmentation. Notably, this work represents the first\nintegration of vanilla, graph, and capsule convolutional techniques in the\ndomain of medical image segmentation.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective retinal vessel segmentation requires a sophisticated integration of global contextual awareness and local vessel continuity. To address this challenge, we propose the Graph Capsule Convolution Network (GCC-UNet), which merges capsule convolutions with CNNs to capture both local and global features. The Graph Capsule Convolution operator is specifically designed to enhance the representation of global context, while the Selective Graph Attention Fusion module ensures seamless integration of local and global information. To further improve vessel continuity, we introduce the Bottleneck Graph Attention module, which incorporates Channel-wise and Spatial Graph Attention mechanisms. The Multi-Scale Graph Fusion module adeptly combines features from various scales. Our approach has been rigorously validated through experiments on widely used public datasets, with ablation studies confirming the efficacy of each component. Comparative results highlight GCC-UNet's superior performance over existing methods, setting a new benchmark in retinal vessel segmentation. Notably, this work represents the first integration of vanilla, graph, and capsule convolutional techniques in the domain of medical image segmentation.
利用深度图和胶囊推理进行视网膜血管分段
有效的视网膜血管分割需要对全局上下文感知和局部血管连续性进行精密整合。为了应对这一挑战,我们提出了图形胶囊卷积网络(GCC-UNet),它将胶囊卷积与 CNN 相结合,以捕捉局部和全局特征。图胶囊卷积算子专为增强全局上下文的表示而设计,而选择性图注意融合模块则确保本地和全局信息的无缝整合。为了进一步改善船只的连续性,我们引入了瓶颈图关注模块,该模块融合了通道和空间图关注机制。多尺度图融合模块巧妙地结合了不同尺度的特征。通过在广泛使用的公共数据集上进行实验,我们的方法得到了严格的验证,消融研究证实了每个组件的功效。比较结果表明,GCC-UNet 的性能优于现有方法,为视网膜血管分割树立了新的标杆。值得注意的是,这项研究首次在医学图像分割领域整合了香草、图和胶囊卷积技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信