multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information

Hongjun Zhu, Jiaohang Huang, Kuo Chen, Xuehui Ying, Ying Qian
{"title":"multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information","authors":"Hongjun Zhu, Jiaohang Huang, Kuo Chen, Xuehui Ying, Ying Qian","doi":"arxiv-2409.12167","DOIUrl":null,"url":null,"abstract":"Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis,\ntreatment planning, and monitoring the progression of brain tumors. However,\ndue to the variability in tumor appearance, size, and intensity across\ndifferent MRI modalities, automated segmentation remains a challenging task. In\nthis study, we propose a novel Transformer-based framework, multiPI-TransBTS,\nwhich integrates multi-physical information to enhance segmentation accuracy.\nThe model leverages spatial information, semantic information, and multi-modal\nimaging data, addressing the inherent heterogeneity in brain tumor\ncharacteristics. The multiPI-TransBTS framework consists of an encoder, an\nAdaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature\ndecoder. The encoder incorporates a multi-branch architecture to separately\nextract modality-specific features from different MRI sequences. The AFF module\nfuses information from multiple sources using channel-wise and element-wise\nattention, ensuring effective feature recalibration. The decoder combines both\ncommon and task-specific features through a Task-Specific Feature Introduction\n(TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT),\nTumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on\nthe BraTS2019 and BraTS2020 datasets demonstrate the superiority of\nmultiPI-TransBTS over the state-of-the-art methods. The model consistently\nachieves better Dice coefficients, Hausdorff distances, and Sensitivity scores,\nhighlighting its effectiveness in addressing the BraTS challenges. Our results\nalso indicate the need for further exploration of the balance between precision\nand recall in the ET segmentation task. The proposed framework represents a\nsignificant advancement in BraTS, with potential implications for improving\nclinical outcomes for brain tumor patients.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. However, due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task. In this study, we propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy. The model leverages spatial information, semantic information, and multi-modal imaging data, addressing the inherent heterogeneity in brain tumor characteristics. The multiPI-TransBTS framework consists of an encoder, an Adaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature decoder. The encoder incorporates a multi-branch architecture to separately extract modality-specific features from different MRI sequences. The AFF module fuses information from multiple sources using channel-wise and element-wise attention, ensuring effective feature recalibration. The decoder combines both common and task-specific features through a Task-Specific Feature Introduction (TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on the BraTS2019 and BraTS2020 datasets demonstrate the superiority of multiPI-TransBTS over the state-of-the-art methods. The model consistently achieves better Dice coefficients, Hausdorff distances, and Sensitivity scores, highlighting its effectiveness in addressing the BraTS challenges. Our results also indicate the need for further exploration of the balance between precision and recall in the ET segmentation task. The proposed framework represents a significant advancement in BraTS, with potential implications for improving clinical outcomes for brain tumor patients.
multiPI-TransBTS:基于多物理信息的脑肿瘤图像分割多路径学习框架
脑肿瘤分割(Brain Tumor Segmentation,BraTS)在临床诊断、治疗计划和监测脑肿瘤进展方面发挥着至关重要的作用。然而,由于不同磁共振成像模式下肿瘤的外观、大小和强度存在差异,自动分割仍是一项具有挑战性的任务。该模型利用空间信息、语义信息和多模态成像数据,解决了脑肿瘤固有的异质性特征。multiPI-TransBTS 框架由编码器、自适应特征融合(AFF)模块和多源多尺度特征编码器组成。编码器采用多分支架构,分别从不同的磁共振成像序列中提取特定模态的特征。AFF 模块利用信道和元素注意力融合来自多个来源的信息,确保有效的特征重新校准。解码器通过任务特异性特征引入(TSFI)策略将通用特征和任务特异性特征结合起来,为整个肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)区域提供精确的分割输出。在 BraTS2019 和 BraTS2020 数据集上进行的综合评估表明,multiPI-TransBTS 优于最先进的方法。该模型的 Dice 系数、Hausdorff 距离和灵敏度得分一直较高,突出表明了它在应对 BraTS 挑战方面的有效性。我们的结果还表明,有必要进一步探索在 ET 分割任务中精度和召回率之间的平衡。所提出的框架代表了 BraTS 的重大进步,对改善脑肿瘤患者的临床疗效具有潜在意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信