Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond

Zack GoldblumUniversity of Pennsylvania, Zhongchuan XuUniversity of Pennsylvania, Haoer ShiUniversity of Pennsylvania, Patryk OrzechowskiUniversity of PennsylvaniaAGH University of Krakow, Jamaal SpenceUniversity of Pennsylvania, Kathryn A DavisUniversity of Pennsylvania, Brian LittUniversity of Pennsylvania, Nishant SinhaUniversity of Pennsylvania, Joost WagenaarUniversity of Pennsylvania
{"title":"Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond","authors":"Zack GoldblumUniversity of Pennsylvania, Zhongchuan XuUniversity of Pennsylvania, Haoer ShiUniversity of Pennsylvania, Patryk OrzechowskiUniversity of PennsylvaniaAGH University of Krakow, Jamaal SpenceUniversity of Pennsylvania, Kathryn A DavisUniversity of Pennsylvania, Brian LittUniversity of Pennsylvania, Nishant SinhaUniversity of Pennsylvania, Joost WagenaarUniversity of Pennsylvania","doi":"arxiv-2409.10509","DOIUrl":null,"url":null,"abstract":"The exponential growth of neuroscientific data necessitates platforms that\nfacilitate data management and multidisciplinary collaboration. In this paper,\nwe introduce Pennsieve - an open-source, cloud-based scientific data management\nplatform built to meet these needs. Pennsieve supports complex multimodal\ndatasets and provides tools for data visualization and analyses. It takes a\ncomprehensive approach to data integration, enabling researchers to define\ncustom metadata schemas and utilize advanced tools to filter and query their\ndata. Pennsieve's modular architecture allows external applications to extend\nits capabilities, and collaborative workspaces with peer-reviewed data\npublishing mechanisms promote high-quality datasets optimized for downstream\nanalysis, both in the cloud and on-premises. Pennsieve forms the core for major neuroscience research programs including\nthe NIH SPARC Initiative, NIH HEAL Initiative's PRECISION Human Pain Network,\nand NIH HEAL RE-JOIN Initiative. It serves more than 80 research groups\nworldwide, along with several large-scale, inter-institutional projects at\nclinical sites through the University of Pennsylvania. Underpinning the\nSPARC.Science, Epilepsy.Science, and Pennsieve Discover portals, Pennsieve\nstores over 125 TB of scientific data, with 35 TB of data publicly available\nacross more than 350 high-impact datasets. It adheres to the findable,\naccessible, interoperable, and reusable (FAIR) principles of data sharing and\nis recognized as one of the NIH-approved Data Repositories. By facilitating\nscientific data management, discovery, and analysis, Pennsieve fosters a robust\nand collaborative research ecosystem for neuroscience and beyond.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of neuroscientific data necessitates platforms that facilitate data management and multidisciplinary collaboration. In this paper, we introduce Pennsieve - an open-source, cloud-based scientific data management platform built to meet these needs. Pennsieve supports complex multimodal datasets and provides tools for data visualization and analyses. It takes a comprehensive approach to data integration, enabling researchers to define custom metadata schemas and utilize advanced tools to filter and query their data. Pennsieve's modular architecture allows external applications to extend its capabilities, and collaborative workspaces with peer-reviewed data publishing mechanisms promote high-quality datasets optimized for downstream analysis, both in the cloud and on-premises. Pennsieve forms the core for major neuroscience research programs including the NIH SPARC Initiative, NIH HEAL Initiative's PRECISION Human Pain Network, and NIH HEAL RE-JOIN Initiative. It serves more than 80 research groups worldwide, along with several large-scale, inter-institutional projects at clinical sites through the University of Pennsylvania. Underpinning the SPARC.Science, Epilepsy.Science, and Pennsieve Discover portals, Pennsieve stores over 125 TB of scientific data, with 35 TB of data publicly available across more than 350 high-impact datasets. It adheres to the findable, accessible, interoperable, and reusable (FAIR) principles of data sharing and is recognized as one of the NIH-approved Data Repositories. By facilitating scientific data management, discovery, and analysis, Pennsieve fosters a robust and collaborative research ecosystem for neuroscience and beyond.
Pennsieve--转化神经科学及其他领域的合作平台
神经科学数据的指数级增长需要能促进数据管理和多学科协作的平台。在本文中,我们介绍了Pennsieve--一个为满足这些需求而构建的开源、基于云的科学数据管理平台。Pennsieve 支持复杂的多模式数据集,并提供数据可视化和分析工具。它采用综合方法进行数据整合,使研究人员能够定义自定义元数据模式,并利用高级工具过滤和查询他们的数据。Pennsieve的模块化架构允许外部应用程序扩展其功能,而具有同行评审数据发布机制的协作式工作空间则促进了云端和企业内部的高质量数据集,优化了下游分析。Pennsieve 是主要神经科学研究计划的核心,包括美国国立卫生研究院 SPARC 计划、美国国立卫生研究院 HEAL 计划的 PRECISION 人类疼痛网络和美国国立卫生研究院 HEAL RE-JOIN 计划。它为全球 80 多个研究小组提供服务,并通过宾夕法尼亚大学在临床基地开展了多个大型跨机构项目。宾夕法尼亚大学科学数据中心拥有超过 125 TB 的科学数据,其中 35 TB 的数据可通过 350 多个高影响力的数据集公开获取,这些数据支撑着SPARC.Science、Epilepsy.Science 和 Pennsievest Discover 门户网站。它遵循数据共享的可查找、可访问、可互操作和可重用(FAIR)原则,是美国国立卫生研究院(NIH)认可的数据存储库之一。通过促进科学数据的管理、发现和分析,Pennsieve 为神经科学及其他领域建立了一个强大的合作研究生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信