Spectral U-Net: Enhancing Medical Image Segmentation via Spectral Decomposition

Yaopeng Peng, Milan Sonka, Danny Z. Chen
{"title":"Spectral U-Net: Enhancing Medical Image Segmentation via Spectral Decomposition","authors":"Yaopeng Peng, Milan Sonka, Danny Z. Chen","doi":"arxiv-2409.09216","DOIUrl":null,"url":null,"abstract":"This paper introduces Spectral U-Net, a novel deep learning network based on\nspectral decomposition, by exploiting Dual Tree Complex Wavelet Transform\n(DTCWT) for down-sampling and inverse Dual Tree Complex Wavelet Transform\n(iDTCWT) for up-sampling. We devise the corresponding Wave-Block and\niWave-Block, integrated into the U-Net architecture, aiming at mitigating\ninformation loss during down-sampling and enhancing detail reconstruction\nduring up-sampling. In the encoder, we first decompose the feature map into\nhigh and low-frequency components using DTCWT, enabling down-sampling while\nmitigating information loss. In the decoder, we utilize iDTCWT to reconstruct\nhigher-resolution feature maps from down-sampled features. Evaluations on the\nRetina Fluid, Brain Tumor, and Liver Tumor segmentation datasets with the\nnnU-Net framework demonstrate the superiority of the proposed Spectral U-Net.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces Spectral U-Net, a novel deep learning network based on spectral decomposition, by exploiting Dual Tree Complex Wavelet Transform (DTCWT) for down-sampling and inverse Dual Tree Complex Wavelet Transform (iDTCWT) for up-sampling. We devise the corresponding Wave-Block and iWave-Block, integrated into the U-Net architecture, aiming at mitigating information loss during down-sampling and enhancing detail reconstruction during up-sampling. In the encoder, we first decompose the feature map into high and low-frequency components using DTCWT, enabling down-sampling while mitigating information loss. In the decoder, we utilize iDTCWT to reconstruct higher-resolution feature maps from down-sampled features. Evaluations on the Retina Fluid, Brain Tumor, and Liver Tumor segmentation datasets with the nnU-Net framework demonstrate the superiority of the proposed Spectral U-Net.
光谱 U-网络:通过光谱分解增强医学图像分割功能
本文介绍了基于光谱分解的新型深度学习网络--光谱 U-Net,它利用双树复小波变换(DTCWT)进行下采样,利用逆双树复小波变换(iDTCWT)进行上采样。我们设计了相应的 Wave-Block 和 iWave-Block,并将其集成到 U-Net 架构中,旨在减少下采样时的信息丢失,并增强上采样时的细节重建。在编码器中,我们首先使用 DTCWT 将特征图分解为高频和低频分量,从而实现下采样,同时减少信息丢失。在解码器中,我们利用 iDTCWT 从缩小采样的特征图中重建更高分辨率的特征图。利用 nnU-Net 框架对网液、脑肿瘤和肝脏肿瘤分割数据集进行的评估证明了所提出的光谱 U-Net 的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信