Domain and Content Adaptive Convolutions for Cross-Domain Adenocarcinoma Segmentation

Frauke Wilm, Mathias Öttl, Marc Aubreville, Katharina Breininger
{"title":"Domain and Content Adaptive Convolutions for Cross-Domain Adenocarcinoma Segmentation","authors":"Frauke Wilm, Mathias Öttl, Marc Aubreville, Katharina Breininger","doi":"arxiv-2409.09797","DOIUrl":null,"url":null,"abstract":"Recent advances in computer-aided diagnosis for histopathology have been\nlargely driven by the use of deep learning models for automated image analysis.\nWhile these networks can perform on par with medical experts, their performance\ncan be impeded by out-of-distribution data. The Cross-Organ and Cross-Scanner\nAdenocarcinoma Segmentation (COSAS) challenge aimed to address the task of\ncross-domain adenocarcinoma segmentation in the presence of morphological and\nscanner-induced domain shifts. In this paper, we present a U-Net-based\nsegmentation framework designed to tackle this challenge. Our approach achieved\nsegmentation scores of 0.8020 for the cross-organ track and 0.8527 for the\ncross-scanner track on the final challenge test sets, ranking it the\nbest-performing submission.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in computer-aided diagnosis for histopathology have been largely driven by the use of deep learning models for automated image analysis. While these networks can perform on par with medical experts, their performance can be impeded by out-of-distribution data. The Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation (COSAS) challenge aimed to address the task of cross-domain adenocarcinoma segmentation in the presence of morphological and scanner-induced domain shifts. In this paper, we present a U-Net-based segmentation framework designed to tackle this challenge. Our approach achieved segmentation scores of 0.8020 for the cross-organ track and 0.8527 for the cross-scanner track on the final challenge test sets, ranking it the best-performing submission.
用于跨域腺癌分段的域和内容自适应卷积
虽然这些网络的性能可以与医学专家媲美,但它们的性能可能会受到分布外数据的阻碍。跨器官和跨扫描仪腺癌分割(COSAS)挑战赛旨在解决形态学和扫描仪引起的域偏移情况下的跨域腺癌分割任务。在本文中,我们提出了一个基于 U-Net 的分割框架,旨在应对这一挑战。在最终的挑战测试集上,我们的方法在跨器官轨迹和跨扫描仪轨迹上分别获得了 0.8020 和 0.8527 的分割分数,成为表现最好的提交论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信