SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds

Xiaolong Mao, Hui Yuan, Tian Guo, Shiqi Jiang, Raouf Hamzaoui, Sam Kwong
{"title":"SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds","authors":"Xiaolong Mao, Hui Yuan, Tian Guo, Shiqi Jiang, Raouf Hamzaoui, Sam Kwong","doi":"arxiv-2409.10293","DOIUrl":null,"url":null,"abstract":"We propose an end-to-end attribute compression method for dense point clouds.\nThe proposed method combines a frequency sampling module, an adaptive scale\nfeature extraction module with geometry assistance, and a global hyperprior\nentropy model. The frequency sampling module uses a Hamming window and the Fast\nFourier Transform to extract high-frequency components of the point cloud. The\ndifference between the original point cloud and the sampled point cloud is\ndivided into multiple sub-point clouds. These sub-point clouds are then\npartitioned using an octree, providing a structured input for feature\nextraction. The feature extraction module integrates adaptive convolutional\nlayers and uses offset-attention to capture both local and global features.\nThen, a geometry-assisted attribute feature refinement module is used to refine\nthe extracted attribute features. Finally, a global hyperprior model is\nintroduced for entropy encoding. This model propagates hyperprior parameters\nfrom the deepest (base) layer to the other layers, further enhancing the\nencoding efficiency. At the decoder, a mirrored network is used to\nprogressively restore features and reconstruct the color attribute through\ntransposed convolutional layers. The proposed method encodes base layer\ninformation at a low bitrate and progressively adds enhancement layer\ninformation to improve reconstruction accuracy. Compared to the latest G-PCC\ntest model (TMC13v23) under the MPEG common test conditions (CTCs), the\nproposed method achieved an average Bjontegaard delta bitrate reduction of\n24.58% for the Y component (21.23% for YUV combined) on the MPEG Category Solid\ndataset and 22.48% for the Y component (17.19% for YUV combined) on the MPEG\nCategory Dense dataset. This is the first instance of a learning-based codec\noutperforming the G-PCC standard on these datasets under the MPEG CTCs.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an end-to-end attribute compression method for dense point clouds. The proposed method combines a frequency sampling module, an adaptive scale feature extraction module with geometry assistance, and a global hyperprior entropy model. The frequency sampling module uses a Hamming window and the Fast Fourier Transform to extract high-frequency components of the point cloud. The difference between the original point cloud and the sampled point cloud is divided into multiple sub-point clouds. These sub-point clouds are then partitioned using an octree, providing a structured input for feature extraction. The feature extraction module integrates adaptive convolutional layers and uses offset-attention to capture both local and global features. Then, a geometry-assisted attribute feature refinement module is used to refine the extracted attribute features. Finally, a global hyperprior model is introduced for entropy encoding. This model propagates hyperprior parameters from the deepest (base) layer to the other layers, further enhancing the encoding efficiency. At the decoder, a mirrored network is used to progressively restore features and reconstruct the color attribute through transposed convolutional layers. The proposed method encodes base layer information at a low bitrate and progressively adds enhancement layer information to improve reconstruction accuracy. Compared to the latest G-PCC test model (TMC13v23) under the MPEG common test conditions (CTCs), the proposed method achieved an average Bjontegaard delta bitrate reduction of 24.58% for the Y component (21.23% for YUV combined) on the MPEG Category Solid dataset and 22.48% for the Y component (17.19% for YUV combined) on the MPEG Category Dense dataset. This is the first instance of a learning-based codec outperforming the G-PCC standard on these datasets under the MPEG CTCs.
SPAC:基于采样的高密度点云渐进式属性压缩
我们提出了一种端到端的高密度点云属性压缩方法,该方法结合了频率采样模块、几何辅助自适应比例特征提取模块和全局超前熵模型。频率采样模块使用汉明窗和快速傅里叶变换来提取点云的高频成分。原始点云和采样点云之间的差异被划分为多个子点云。然后使用八叉树对这些子点云进行分区,为特征提取提供结构化输入。特征提取模块集成了自适应卷积分层,并使用偏移注意来捕捉局部和全局特征,然后使用几何辅助属性特征细化模块来细化提取的属性特征。最后,引入全局超先验模型进行熵编码。该模型将超先验参数从最深(基础)层传播到其他层,进一步提高了编码效率。在解码器中,使用镜像网络逐步还原特征,并通过交叉卷积层重建颜色属性。所提出的方法以较低的比特率对基础层信息进行编码,并逐步增加增强层信息以提高重构精度。在 MPEG 通用测试条件(CTCs)下,与最新的 G-PCC 测试模型(TMC13v23)相比,拟议方法在 MPEG 类别 Soliddataset 上的 Y 分量平均比特率降低了 24.58%(YUV 合并比特率降低了 21.23%),在 MPEG 类别 Dense 数据集上的 Y 分量平均比特率降低了 22.48%(YUV 合并比特率降低了 17.19%)。这是基于学习的编解码器在 MPEG CTC 下的这些数据集上首次超越 G-PCC 标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信