A Joint Network for Low-Light Image Enhancement Based on Retinex

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yonglong Jiang, Jiahe Zhu, Liangliang Li, Hongbing Ma
{"title":"A Joint Network for Low-Light Image Enhancement Based on Retinex","authors":"Yonglong Jiang, Jiahe Zhu, Liangliang Li, Hongbing Ma","doi":"10.1007/s12559-024-10347-4","DOIUrl":null,"url":null,"abstract":"<p>Methods based on the physical Retinex model are effective in enhancing low-light images, adeptly handling the challenges posed by low signal-to-noise ratios and high noise in images captured under weak lighting conditions. However, traditional models based on manually designed Retinex priors do not adapt well to complex and varying degradation environments. DEANet (Jiang et al., Tsinghua Sci Technol. 2023;28(4):743–53 2023) combines frequency and Retinex to address the interference of high-frequency noise in low-light image restoration. Nonetheless, low-frequency noise still significantly impacts the restoration of low-light images. To overcome this issue, this paper integrates the physical Retinex model with deep learning to propose a joint network model, DEANet++, for enhancing low-light images. The model is divided into three modules: decomposition, enhancement, and adjustment. The decomposition module employs a data-driven approach based on Retinex theory to split the image; the enhancement module restores degradation and adjusts brightness in the decomposed images; and the adjustment module restores details and adjusts complex features in the enhanced images. Trained on the publicly available LOL dataset, DEANet++ not only surpasses the control group in both visual and quantitative aspects but also achieves superior results compared to other Retinex-based enhancement methods. Ablation studies and additional experiments highlight the importance of each component in this method.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"110 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10347-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Methods based on the physical Retinex model are effective in enhancing low-light images, adeptly handling the challenges posed by low signal-to-noise ratios and high noise in images captured under weak lighting conditions. However, traditional models based on manually designed Retinex priors do not adapt well to complex and varying degradation environments. DEANet (Jiang et al., Tsinghua Sci Technol. 2023;28(4):743–53 2023) combines frequency and Retinex to address the interference of high-frequency noise in low-light image restoration. Nonetheless, low-frequency noise still significantly impacts the restoration of low-light images. To overcome this issue, this paper integrates the physical Retinex model with deep learning to propose a joint network model, DEANet++, for enhancing low-light images. The model is divided into three modules: decomposition, enhancement, and adjustment. The decomposition module employs a data-driven approach based on Retinex theory to split the image; the enhancement module restores degradation and adjusts brightness in the decomposed images; and the adjustment module restores details and adjusts complex features in the enhanced images. Trained on the publicly available LOL dataset, DEANet++ not only surpasses the control group in both visual and quantitative aspects but also achieves superior results compared to other Retinex-based enhancement methods. Ablation studies and additional experiments highlight the importance of each component in this method.

Abstract Image

基于 Retinex 的低照度图像增强联合网络
基于物理 Retinex 模型的方法能有效增强弱光图像的效果,并能巧妙地应对弱光条件下拍摄的低信噪比和高噪声图像所带来的挑战。然而,基于人工设计的 Retinex 前验的传统模型不能很好地适应复杂多变的退化环境。DEANet (Jiang 等,Tsinghua Sci Technol.2023; 28(4):743-53 2023)将频率和 Retinex 结合起来,解决了低照度图像复原中高频噪声的干扰问题。然而,低频噪声仍会对低照度图像的修复产生重大影响。为了克服这一问题,本文将物理 Retinex 模型与深度学习相结合,提出了一种用于增强低照度图像的联合网络模型 DEANet++。该模型分为三个模块:分解、增强和调整。分解模块采用基于 Retinex 理论的数据驱动方法对图像进行分解;增强模块对分解后的图像进行降级恢复和亮度调整;调整模块对增强后的图像进行细节恢复和复杂特征调整。在公开的 LOL 数据集上进行训练后,DEANet++ 不仅在视觉和定量方面超越了对照组,而且与其他基于 Retinex 的增强方法相比也取得了优异的结果。消融研究和其他实验凸显了该方法中每个组件的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Computation
Cognitive Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-NEUROSCIENCES
CiteScore
9.30
自引率
3.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信