Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sumit Mahahjan, Arbaz Khan
{"title":"Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation","authors":"Sumit Mahahjan, Arbaz Khan","doi":"10.1137/23m1612196","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2972-A2998, October 2024. <br/> Abstract. In this paper, the numerical approximation of the generalized Burgers–Huxley equation (GBHE) with weakly singular kernels using nonconforming methods will be presented. Specifically, we discuss two new formulations. The first formulation is based on the nonconforming finite element method. The other formulation is based on discontinuous Galerkin finite element methods. The wellposedness results for both formulations are proved. Then, a priori error estimates for both the semidiscrete and fully discrete schemes are derived. Specific numerical examples, including some applications for the GBHE with a weakly singular model, are discussed to validate the theoretical results.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1612196","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2972-A2998, October 2024.
Abstract. In this paper, the numerical approximation of the generalized Burgers–Huxley equation (GBHE) with weakly singular kernels using nonconforming methods will be presented. Specifically, we discuss two new formulations. The first formulation is based on the nonconforming finite element method. The other formulation is based on discontinuous Galerkin finite element methods. The wellposedness results for both formulations are proved. Then, a priori error estimates for both the semidiscrete and fully discrete schemes are derived. Specific numerical examples, including some applications for the GBHE with a weakly singular model, are discussed to validate the theoretical results.
具有弱奇异内核的延迟广义伯格斯-赫胥黎方程的有限元近似:第二部分不符和 DG 近似算法
SIAM 科学计算期刊》,第 46 卷第 5 期,第 A2972-A2998 页,2024 年 10 月。 摘要本文将介绍使用非符合方法对具有弱奇异内核的广义伯格斯-赫胥黎方程(GBHE)进行数值逼近。具体来说,我们讨论了两种新的公式。第一种公式是基于不拘泥有限元法。另一种公式基于非连续 Galerkin 有限元方法。我们证明了这两种公式的拟合结果。然后,得出了半离散和完全离散方案的先验误差估计。讨论了具体的数值示例,包括一些弱奇异模型 GBHE 的应用,以验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信