Presentation of monoids generated by a projection and an involution

Pub Date : 2024-09-17 DOI:10.1007/s00233-024-10469-z
Pascal Caron, Jean-Gabriel Luque, Bruno Patrou
{"title":"Presentation of monoids generated by a projection and an involution","authors":"Pascal Caron, Jean-Gabriel Luque, Bruno Patrou","doi":"10.1007/s00233-024-10469-z","DOIUrl":null,"url":null,"abstract":"<p>Monoids generated by elements of order two appear in numerous places in the literature. For example, Coxeter reflection groups in geometry, Kuratowski monoids in topology, various monoids generated by regular operations in language theory and so on. In order to initiate a classification of these monoids, we are interested in the subproblem of monoids, called strict Projection Involution Monoids (2-PIMs), generated by an involution and an idempotent. In this case we show, when the monoid is finite, that it is generated by a single equation (in addition to the two defining the involution and the idempotent). We then describe the exact possible forms of this equation and classify them. We recover Kuratowski’s theorem as a special case of our study.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10469-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monoids generated by elements of order two appear in numerous places in the literature. For example, Coxeter reflection groups in geometry, Kuratowski monoids in topology, various monoids generated by regular operations in language theory and so on. In order to initiate a classification of these monoids, we are interested in the subproblem of monoids, called strict Projection Involution Monoids (2-PIMs), generated by an involution and an idempotent. In this case we show, when the monoid is finite, that it is generated by a single equation (in addition to the two defining the involution and the idempotent). We then describe the exact possible forms of this equation and classify them. We recover Kuratowski’s theorem as a special case of our study.

Abstract Image

分享
查看原文
由投影和内卷生成的单体的展示
由二阶元素生成的单体出现在许多文献中。例如,几何学中的考斯特反射群、拓扑学中的库拉托夫斯基单元组、语言理论中由正则运算生成的各种单元组等等。为了对这些单体进行分类,我们对由一个反演和一个幂等子项生成的单体的子问题很感兴趣,这种单体被称为严格投影反演单体(2-PIMs)。在这种情况下,当单体有限时,我们会证明它是由单个方程生成的(除了定义内卷和幂等的两个方程之外)。然后,我们描述了这个方程的确切可能形式,并对它们进行了分类。作为我们研究的一个特例,我们恢复了库拉托夫斯基定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信