SpMis: An Investigation of Synthetic Spoken Misinformation Detection

Peizhuo Liu, Li Wang, Renqiang He, Haorui He, Lei Wang, Huadi Zheng, Jie Shi, Tong Xiao, Zhizheng Wu
{"title":"SpMis: An Investigation of Synthetic Spoken Misinformation Detection","authors":"Peizhuo Liu, Li Wang, Renqiang He, Haorui He, Lei Wang, Huadi Zheng, Jie Shi, Tong Xiao, Zhizheng Wu","doi":"arxiv-2409.11308","DOIUrl":null,"url":null,"abstract":"In recent years, speech generation technology has advanced rapidly, fueled by\ngenerative models and large-scale training techniques. While these developments\nhave enabled the production of high-quality synthetic speech, they have also\nraised concerns about the misuse of this technology, particularly for\ngenerating synthetic misinformation. Current research primarily focuses on\ndistinguishing machine-generated speech from human-produced speech, but the\nmore urgent challenge is detecting misinformation within spoken content. This\ntask requires a thorough analysis of factors such as speaker identity, topic,\nand synthesis. To address this need, we conduct an initial investigation into\nsynthetic spoken misinformation detection by introducing an open-source\ndataset, SpMis. SpMis includes speech synthesized from over 1,000 speakers\nacross five common topics, utilizing state-of-the-art text-to-speech systems.\nAlthough our results show promising detection capabilities, they also reveal\nsubstantial challenges for practical implementation, underscoring the\nimportance of ongoing research in this critical area.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, speech generation technology has advanced rapidly, fueled by generative models and large-scale training techniques. While these developments have enabled the production of high-quality synthetic speech, they have also raised concerns about the misuse of this technology, particularly for generating synthetic misinformation. Current research primarily focuses on distinguishing machine-generated speech from human-produced speech, but the more urgent challenge is detecting misinformation within spoken content. This task requires a thorough analysis of factors such as speaker identity, topic, and synthesis. To address this need, we conduct an initial investigation into synthetic spoken misinformation detection by introducing an open-source dataset, SpMis. SpMis includes speech synthesized from over 1,000 speakers across five common topics, utilizing state-of-the-art text-to-speech systems. Although our results show promising detection capabilities, they also reveal substantial challenges for practical implementation, underscoring the importance of ongoing research in this critical area.
SpMis:合成语音错误信息检测研究
近年来,语音生成技术在生成模型和大规模训练技术的推动下发展迅速。虽然这些发展使高质量合成语音的生成成为可能,但同时也引发了对滥用该技术的担忧,尤其是生成合成错误信息。目前的研究主要集中在区分机器生成的语音和人类生成的语音,但更紧迫的挑战是检测口语内容中的错误信息。这项任务要求对说话人身份、话题和合成等因素进行全面分析。为了满足这一需求,我们引入了一个开源数据集 SpMis,对合成语音错误信息检测进行了初步研究。虽然我们的结果显示了良好的检测能力,但同时也揭示了实际应用中的巨大挑战,强调了在这一关键领域持续开展研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信