AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs

Basel Mousi, Nadir Durrani, Fatema Ahmad, Md. Arid Hasan, Maram Hasanain, Tameem Kabbani, Fahim Dalvi, Shammur Absar Chowdhury, Firoj Alam
{"title":"AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs","authors":"Basel Mousi, Nadir Durrani, Fatema Ahmad, Md. Arid Hasan, Maram Hasanain, Tameem Kabbani, Fahim Dalvi, Shammur Absar Chowdhury, Firoj Alam","doi":"arxiv-2409.11404","DOIUrl":null,"url":null,"abstract":"Arabic, with its rich diversity of dialects, remains significantly\nunderrepresented in Large Language Models, particularly in dialectal\nvariations. We address this gap by introducing seven synthetic datasets in\ndialects alongside Modern Standard Arabic (MSA), created using Machine\nTranslation (MT) combined with human post-editing. We present AraDiCE, a\nbenchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on\ndialect comprehension and generation, focusing specifically on low-resource\nArabic dialects. Additionally, we introduce the first-ever fine-grained\nbenchmark designed to evaluate cultural awareness across the Gulf, Egypt, and\nLevant regions, providing a novel dimension to LLM evaluation. Our findings\ndemonstrate that while Arabic-specific models like Jais and AceGPT outperform\nmultilingual models on dialectal tasks, significant challenges persist in\ndialect identification, generation, and translation. This work contributes ~45K\npost-edited samples, a cultural benchmark, and highlights the importance of\ntailored training to improve LLM performance in capturing the nuances of\ndiverse Arabic dialects and cultural contexts. We will release the dialectal\ntranslation models and benchmarks curated in this study.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on dialect comprehension and generation, focusing specifically on low-resource Arabic dialects. Additionally, we introduce the first-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions, providing a novel dimension to LLM evaluation. Our findings demonstrate that while Arabic-specific models like Jais and AceGPT outperform multilingual models on dialectal tasks, significant challenges persist in dialect identification, generation, and translation. This work contributes ~45K post-edited samples, a cultural benchmark, and highlights the importance of tailored training to improve LLM performance in capturing the nuances of diverse Arabic dialects and cultural contexts. We will release the dialectal translation models and benchmarks curated in this study.
AraDiCE:法律硕士的方言和文化能力基准
阿拉伯语具有丰富的方言多样性,但在大型语言模型中,特别是在方言变化方面,其代表性仍然明显不足。为了填补这一空白,我们引入了七个合成数据集,这些数据集是使用机器翻译(MT)结合人工后期编辑创建的,与现代标准阿拉伯语(MSA)并列。我们提出了阿拉伯语方言和文化评估基准 AraDiCE。我们对 LLM 的方言理解和生成进行了评估,特别关注低资源阿拉伯语方言。此外,我们还首次推出了细粒度基准,用于评估海湾、埃及和莱万特地区的文化意识,为 LLM 评估提供了一个新的维度。我们的研究结果表明,虽然 Jais 和 AceGPT 等阿拉伯语特定模型在方言任务上优于多语言模型,但在方言识别、生成和翻译方面仍然存在重大挑战。这项工作提供了约 45K 个经过编辑的样本,这是一个文化基准,并强调了有针对性的训练对于提高 LLM 在捕捉不同阿拉伯语方言和文化背景的细微差别方面的性能的重要性。我们将发布本研究中策划的方言翻译模型和基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信