Enriching Datasets with Demographics through Large Language Models: What's in a Name?

Khaled AlNuaimi, Gautier Marti, Mathieu Ravaut, Abdulla AlKetbi, Andreas Henschel, Raed Jaradat
{"title":"Enriching Datasets with Demographics through Large Language Models: What's in a Name?","authors":"Khaled AlNuaimi, Gautier Marti, Mathieu Ravaut, Abdulla AlKetbi, Andreas Henschel, Raed Jaradat","doi":"arxiv-2409.11491","DOIUrl":null,"url":null,"abstract":"Enriching datasets with demographic information, such as gender, race, and\nage from names, is a critical task in fields like healthcare, public policy,\nand social sciences. Such demographic insights allow for more precise and\neffective engagement with target populations. Despite previous efforts\nemploying hidden Markov models and recurrent neural networks to predict\ndemographics from names, significant limitations persist: the lack of\nlarge-scale, well-curated, unbiased, publicly available datasets, and the lack\nof an approach robust across datasets. This scarcity has hindered the\ndevelopment of traditional supervised learning approaches. In this paper, we\ndemonstrate that the zero-shot capabilities of Large Language Models (LLMs) can\nperform as well as, if not better than, bespoke models trained on specialized\ndata. We apply these LLMs to a variety of datasets, including a real-life,\nunlabelled dataset of licensed financial professionals in Hong Kong, and\ncritically assess the inherent demographic biases in these models. Our work not\nonly advances the state-of-the-art in demographic enrichment but also opens\navenues for future research in mitigating biases in LLMs.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enriching datasets with demographic information, such as gender, race, and age from names, is a critical task in fields like healthcare, public policy, and social sciences. Such demographic insights allow for more precise and effective engagement with target populations. Despite previous efforts employing hidden Markov models and recurrent neural networks to predict demographics from names, significant limitations persist: the lack of large-scale, well-curated, unbiased, publicly available datasets, and the lack of an approach robust across datasets. This scarcity has hindered the development of traditional supervised learning approaches. In this paper, we demonstrate that the zero-shot capabilities of Large Language Models (LLMs) can perform as well as, if not better than, bespoke models trained on specialized data. We apply these LLMs to a variety of datasets, including a real-life, unlabelled dataset of licensed financial professionals in Hong Kong, and critically assess the inherent demographic biases in these models. Our work not only advances the state-of-the-art in demographic enrichment but also opens avenues for future research in mitigating biases in LLMs.
通过大型语言模型用人口统计学丰富数据集:名字里有什么?
在医疗保健、公共政策和社会科学等领域,利用性别、种族和年龄等人口统计学信息丰富数据集是一项至关重要的任务。有了这些人口信息,就能更精确、更有效地与目标人群打交道。尽管以前曾尝试过采用隐马尔可夫模型和递归神经网络来预测姓名中的人口统计学特征,但仍然存在很大的局限性:缺乏大规模的、经过精心整理的、无偏见的、公开可用的数据集,而且缺乏一种跨数据集的稳健方法。这种匮乏阻碍了传统监督学习方法的发展。在本文中,我们证明了大型语言模型(LLMs)的零拍能力可以与在专门数据上训练的定制模型表现得一样好,甚至更好。我们将这些大型语言模型应用于各种数据集,包括香港持牌金融专业人士的无标签真实数据集,并对这些模型中固有的人口统计偏差进行了严格评估。我们的工作不仅推动了人口统计富集领域的最新研究成果,还为未来减轻 LLM 偏差的研究开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信