Tilted Solid-On-Solid is liquid: scaling limit of SOS with a potential on a slope

Benoît Laslier, Eyal Lubetzky
{"title":"Tilted Solid-On-Solid is liquid: scaling limit of SOS with a potential on a slope","authors":"Benoît Laslier, Eyal Lubetzky","doi":"arxiv-2409.08745","DOIUrl":null,"url":null,"abstract":"The $(2+1)$D Solid-On-Solid (SOS) model famously exhibits a roughening\ntransition: on an $N\\times N$ torus with the height at the origin rooted at\n$0$, the variance of $h(x)$, the height at $x$, is $O(1)$ at large\ninverse-temperature $\\beta$, vs. $\\asymp \\log |x|$ at small $\\beta$ (as in the\nGaussian free field (GFF)). The former--rigidity at large $\\beta$--is known for\na wide class of $|\\nabla\\phi|^p$ models ($p=1$ being SOS) yet is believed to\nfail once the surface is on a slope (tilted boundary conditions). It is\nconjectured that the slope would destabilize the rigidity and induce the\nGFF-type behavior of the surface at small $\\beta$. The only rigorous result on\nthis is by Sheffield (2005): for these models of integer height functions, if\nthe slope $\\theta$ is irrational, then Var$(h(x))\\to\\infty$ with $|x|$ (with no\nknown quantitative bound). We study a family of SOS surfaces at a large enough fixed $\\beta$, on an\n$N\\times N$ torus with a nonzero boundary condition slope $\\theta$, perturbed\nby a potential $V$ of strength $\\epsilon_\\beta$ per site (arbitrarily small).\nOur main result is (a) the measure on the height gradients $\\nabla h$ has a\nweak limit $\\mu_\\infty$ as $N\\to\\infty$; and (b) the scaling limit of a sample\nfrom $\\mu_\\infty$ converges to a full plane GFF. In particular, we recover the\nasymptotics Var$(h(x))\\sim c\\log|x|$. To our knowledge, this is the first\nexample of a tilted $|\\nabla\\phi|^p$ model, or a perturbation thereof, where\nthe limit is recovered at large $\\beta$. The proof looks at random monotone\nsurfaces that approximate the SOS surface, and shows that (i) these form a\nweakly interacting dimer model, and (ii) the renormalization framework of\nGiuliani, Mastropietro and Toninelli (2017) leads to the GFF limit. New\ningredients are needed in both parts, including a nontrivial extension of\n[GMT17] from finite interactions to any long range summable interactions.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $(2+1)$D Solid-On-Solid (SOS) model famously exhibits a roughening transition: on an $N\times N$ torus with the height at the origin rooted at $0$, the variance of $h(x)$, the height at $x$, is $O(1)$ at large inverse-temperature $\beta$, vs. $\asymp \log |x|$ at small $\beta$ (as in the Gaussian free field (GFF)). The former--rigidity at large $\beta$--is known for a wide class of $|\nabla\phi|^p$ models ($p=1$ being SOS) yet is believed to fail once the surface is on a slope (tilted boundary conditions). It is conjectured that the slope would destabilize the rigidity and induce the GFF-type behavior of the surface at small $\beta$. The only rigorous result on this is by Sheffield (2005): for these models of integer height functions, if the slope $\theta$ is irrational, then Var$(h(x))\to\infty$ with $|x|$ (with no known quantitative bound). We study a family of SOS surfaces at a large enough fixed $\beta$, on an $N\times N$ torus with a nonzero boundary condition slope $\theta$, perturbed by a potential $V$ of strength $\epsilon_\beta$ per site (arbitrarily small). Our main result is (a) the measure on the height gradients $\nabla h$ has a weak limit $\mu_\infty$ as $N\to\infty$; and (b) the scaling limit of a sample from $\mu_\infty$ converges to a full plane GFF. In particular, we recover the asymptotics Var$(h(x))\sim c\log|x|$. To our knowledge, this is the first example of a tilted $|\nabla\phi|^p$ model, or a perturbation thereof, where the limit is recovered at large $\beta$. The proof looks at random monotone surfaces that approximate the SOS surface, and shows that (i) these form a weakly interacting dimer model, and (ii) the renormalization framework of Giuliani, Mastropietro and Toninelli (2017) leads to the GFF limit. New ingredients are needed in both parts, including a nontrivial extension of [GMT17] from finite interactions to any long range summable interactions.
倾斜固一固是液体:具有斜坡势能的 SOS 的缩放极限
$(2+1)$D固-固(SOS)模型表现出著名的粗糙化转变:在一个原点高度为$0的$N\times N$环上,$h(x)$的方差,即$x$处的高度,在大逆温$\beta$时为$O(1)$,而在小$\beta$时为$\asymp \log ||x|$(如在高斯自由场(GFF)中)。前者--大$\beta$时的刚性--对于一大类$|\nabla\phi|^p$模型($p=1$为SOS)是已知的,然而一旦表面处于斜坡上(倾斜边界条件),就会失效。据推测,斜坡会破坏刚度的稳定性,并在较小的 $\beta$ 时诱发表面的 GFF 型行为。关于这一点的唯一严格结果是 Sheffield(2005)提出的:对于这些整数高度函数模型,如果斜率 $\theta$ 是无理的,那么 Var$(h(x))\to\infty$ 与 $|x|$ 有关(没有已知的定量约束)。我们研究了在一个足够大的固定$\beta$下的SOS曲面族,它位于一个具有非零边界条件斜率$theta$的$N\times N$环上,并受到一个每个位点强度为$\epsilon_\beta$(任意小)的势$V$的扰动。我们的主要结果是:(a)高度梯度的度量 $\nabla h$ 随着 $N\to\infty$ 的增大而具有敬畏极限 $\mu_\infty$;(b)从 $\mu_\infty$ 开始的采样的缩放极限收敛到全平面 GFF。特别是,我们恢复了 Var$(h(x))\sim c\log|x|$ 的渐近线。据我们所知,这是倾斜$|\nabla\phi|^p$模型或其扰动的第一个实例,它在大\beta$时恢复了极限。证明着眼于近似 SOS 曲面的随机单调曲面,并表明:(i) 这些曲面构成了一个弱相互作用的二聚体模型;(ii) Giuliani、Mastropietro 和 Toninelli(2017)的重正化框架导致了 GFF 极限。这两部分都需要新的成分,包括将[GMT17]从有限相互作用非难扩展到任何长程可求和相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信