Quantitative propagation of chaos for non-exchangeable diffusions via first-passage percolation

Daniel Lacker, Lane Chun Yeung, Fuzhong Zhou
{"title":"Quantitative propagation of chaos for non-exchangeable diffusions via first-passage percolation","authors":"Daniel Lacker, Lane Chun Yeung, Fuzhong Zhou","doi":"arxiv-2409.08882","DOIUrl":null,"url":null,"abstract":"This paper develops a non-asymptotic approach to mean field approximations\nfor systems of $n$ diffusive particles interacting pairwise. The interaction\nstrengths are not identical, making the particle system non-exchangeable. The\nmarginal law of any subset of particles is compared to a suitably chosen\nproduct measure, and we find sharp relative entropy estimates between the two.\nBuilding upon prior work of the first author in the exchangeable setting, we\nuse a generalized form of the BBGKY hierarchy to derive a hierarchy of\ndifferential inequalities for the relative entropies. Our analysis of this\ncomplicated hierarchy exploits an unexpected but crucial connection with\nfirst-passage percolation, which lets us bound the marginal entropies in terms\nof expectations of functionals of this percolation process.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a non-asymptotic approach to mean field approximations for systems of $n$ diffusive particles interacting pairwise. The interaction strengths are not identical, making the particle system non-exchangeable. The marginal law of any subset of particles is compared to a suitably chosen product measure, and we find sharp relative entropy estimates between the two. Building upon prior work of the first author in the exchangeable setting, we use a generalized form of the BBGKY hierarchy to derive a hierarchy of differential inequalities for the relative entropies. Our analysis of this complicated hierarchy exploits an unexpected but crucial connection with first-passage percolation, which lets us bound the marginal entropies in terms of expectations of functionals of this percolation process.
通过第一通道渗滤实现不可交换扩散的混沌定量传播
本文针对成对相互作用的 $n$ 扩散粒子系统,提出了一种非渐近的平均场近似方法。相互作用的强度并不相同,因此粒子系统是不可交换的。我们将任何粒子子集的边际定律与适当选择的积度量进行比较,发现两者之间存在尖锐的相对熵估计值。在第一作者先前在可交换背景下所做工作的基础上,我们利用 BBGKY 层次的广义形式,推导出相对熵的差分不等式层次。我们对这一复杂层次结构的分析利用了与第一通道渗滤之间意想不到但却至关重要的联系,这让我们可以用这一渗滤过程的函数期望来约束边际熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信