To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, Greg Durrett
{"title":"To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning","authors":"Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, Greg Durrett","doi":"arxiv-2409.12183","DOIUrl":null,"url":null,"abstract":"Chain-of-thought (CoT) via prompting is the de facto method for eliciting\nreasoning capabilities from large language models (LLMs). But for what kinds of\ntasks is this extra ``thinking'' really helpful? To analyze this, we conducted\na quantitative meta-analysis covering over 100 papers using CoT and ran our own\nevaluations of 20 datasets across 14 models. Our results show that CoT gives\nstrong performance benefits primarily on tasks involving math or logic, with\nmuch smaller gains on other types of tasks. On MMLU, directly generating the\nanswer without CoT leads to almost identical accuracy as CoT unless the\nquestion or model's response contains an equals sign, indicating symbolic\noperations and reasoning. Following this finding, we analyze the behavior of\nCoT on these problems by separating planning and execution and comparing\nagainst tool-augmented LLMs. Much of CoT's gain comes from improving symbolic\nexecution, but it underperforms relative to using a symbolic solver. Our\nresults indicate that CoT can be applied selectively, maintaining performance\nwhile saving inference costs. Furthermore, they suggest a need to move beyond\nprompt-based CoT to new paradigms that better leverage intermediate computation\nacross the whole range of LLM applications.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
要还是不要思维链?思维链主要有助于数学和符号推理
通过提示的思维链(CoT)是从大型语言模型(LLM)中激发推理能力的事实方法。但是,这种额外的 "思考 "究竟对哪些任务有帮助呢?为了分析这个问题,我们对 100 多篇使用 CoT 的论文进行了定量荟萃分析,并对 14 个模型的 20 个数据集进行了评估。我们的结果表明,CoT 主要在涉及数学或逻辑的任务中带来了强大的性能优势,而在其他类型的任务中收益要小得多。在 MMLU 任务中,不使用 CoT 直接生成答案的准确率与 CoT 几乎相同,除非问题或模型的回答包含等号,表示符号操作和推理。根据这一发现,我们通过将规划和执行分开,并与工具增强的 LLM 进行比较,分析了 CoT 在这些问题上的表现。CoT 的大部分收益来自于符号执行的改进,但相对于使用符号求解器,它的表现并不理想。我们的研究结果表明,CoT 可以有选择地应用,在保持性能的同时节省推理成本。此外,这些结果还表明,有必要超越基于提示的 CoT,转而采用能在整个 LLM 应用中更好地利用中间计算的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信