Enhancing Complex Formula Recognition with Hierarchical Detail-Focused Network

Jiale Wang, Junhui Yu, Huanyong Liu, Chenanran Kong
{"title":"Enhancing Complex Formula Recognition with Hierarchical Detail-Focused Network","authors":"Jiale Wang, Junhui Yu, Huanyong Liu, Chenanran Kong","doi":"arxiv-2409.11677","DOIUrl":null,"url":null,"abstract":"Hierarchical and complex Mathematical Expression Recognition (MER) is\nchallenging due to multiple possible interpretations of a formula, complicating\nboth parsing and evaluation. In this paper, we introduce the Hierarchical\nDetail-Focused Recognition dataset (HDR), the first dataset specifically\ndesigned to address these issues. It consists of a large-scale training set,\nHDR-100M, offering an unprecedented scale and diversity with one hundred\nmillion training instances. And the test set, HDR-Test, includes multiple\ninterpretations of complex hierarchical formulas for comprehensive model\nperformance evaluation. Additionally, the parsing of complex formulas often\nsuffers from errors in fine-grained details. To address this, we propose the\nHierarchical Detail-Focused Recognition Network (HDNet), an innovative\nframework that incorporates a hierarchical sub-formula module, focusing on the\nprecise handling of formula details, thereby significantly enhancing MER\nperformance. Experimental results demonstrate that HDNet outperforms existing\nMER models across various datasets.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical and complex Mathematical Expression Recognition (MER) is challenging due to multiple possible interpretations of a formula, complicating both parsing and evaluation. In this paper, we introduce the Hierarchical Detail-Focused Recognition dataset (HDR), the first dataset specifically designed to address these issues. It consists of a large-scale training set, HDR-100M, offering an unprecedented scale and diversity with one hundred million training instances. And the test set, HDR-Test, includes multiple interpretations of complex hierarchical formulas for comprehensive model performance evaluation. Additionally, the parsing of complex formulas often suffers from errors in fine-grained details. To address this, we propose the Hierarchical Detail-Focused Recognition Network (HDNet), an innovative framework that incorporates a hierarchical sub-formula module, focusing on the precise handling of formula details, thereby significantly enhancing MER performance. Experimental results demonstrate that HDNet outperforms existing MER models across various datasets.
利用聚焦细节的分层网络增强复杂公式识别能力
分层复杂数学表达式识别(MER)是一项挑战,因为一个公式可能有多种解释,这使得解析和评估都变得复杂。在本文中,我们介绍了分层细节识别数据集(HDR),这是第一个专门为解决这些问题而设计的数据集。它由大规模训练集 HDR-100M 和测试集 HDR-TM 组成。测试集 HDR-Test 包括对复杂分层公式的多种解释,用于全面评估模型性能。此外,复杂公式的解析经常会出现细节错误。为了解决这个问题,我们提出了分层细节识别网络(HDNet),这是一个创新的框架,其中包含一个分层子公式模块,重点是精确处理公式细节,从而显著提高 MER 性能。实验结果表明,在各种数据集上,HDNet 的性能均优于现有的 MER 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信