TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning

Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov, Min-Yen Kan
{"title":"TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning","authors":"Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov, Min-Yen Kan","doi":"arxiv-2409.11724","DOIUrl":null,"url":null,"abstract":"Current Large Language Models (LLMs) exhibit limited ability to understand\ntable structures and to apply precise numerical reasoning, which is crucial for\ntasks such as table question answering (TQA) and table-based fact verification\n(TFV). To address these challenges, we introduce our Tool-Augmented Reasoning\nframework for Tables (TART), which integrates LLMs with specialized tools. TART\ncontains three key components: a table formatter to ensure accurate data\nrepresentation, a tool maker to develop specific computational tools, and an\nexplanation generator to maintain explainability. We also present the TOOLTAB\ndataset, a new benchmark designed specifically for training LLMs in table-tool\nintegration. Our experiments indicate that TART achieves substantial\nimprovements over existing methods (e.g., Chain-of-Thought) by improving both\nthe precision of data processing and the clarity of the reasoning process.\nNotably, TART paired with CodeLlama achieves 90.0% of the accuracy of the\nclosed-sourced LLM GPT-3.5-turbo, highlighting its robustness in diverse\nreal-world scenarios. All the code and data are available at\nhttps://github.com/XinyuanLu00/TART.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current Large Language Models (LLMs) exhibit limited ability to understand table structures and to apply precise numerical reasoning, which is crucial for tasks such as table question answering (TQA) and table-based fact verification (TFV). To address these challenges, we introduce our Tool-Augmented Reasoning framework for Tables (TART), which integrates LLMs with specialized tools. TART contains three key components: a table formatter to ensure accurate data representation, a tool maker to develop specific computational tools, and an explanation generator to maintain explainability. We also present the TOOLTAB dataset, a new benchmark designed specifically for training LLMs in table-tool integration. Our experiments indicate that TART achieves substantial improvements over existing methods (e.g., Chain-of-Thought) by improving both the precision of data processing and the clarity of the reasoning process. Notably, TART paired with CodeLlama achieves 90.0% of the accuracy of the closed-sourced LLM GPT-3.5-turbo, highlighting its robustness in diverse real-world scenarios. All the code and data are available at https://github.com/XinyuanLu00/TART.
TART:基于表格的可解释推理的开源工具增强框架
当前的大型语言模型(LLM)在理解表格结构和应用精确数字推理方面能力有限,而这对于表格问题解答(TQA)和基于表格的事实验证(TFV)等任务至关重要。为了应对这些挑战,我们推出了表格工具增强推理框架(TART),它将 LLM 与专用工具集成在一起。TART 包含三个关键组件:确保数据准确呈现的表格格式化器、开发特定计算工具的工具制造商,以及保持可解释性的解释生成器。我们还提出了 TOOLTAB 数据集,这是一个新的基准,专门用于训练表-表整合的 LLM。我们的实验表明,通过提高数据处理的精度和推理过程的清晰度,TART 比现有方法(如 Chain-of-Thought)有了实质性的改进。值得注意的是,与 CodeLlama 搭配使用的 TART 达到了封闭源 LLM GPT-3.5-turbo 90.0% 的准确率,突出了它在现实世界各种场景中的鲁棒性。所有代码和数据可在https://github.com/XinyuanLu00/TART。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信