Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework

Yuping Wu, Hao Li, Hongbo Zhu, Goran Nenadic, Xiao-Jun Zeng
{"title":"Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework","authors":"Yuping Wu, Hao Li, Hongbo Zhu, Goran Nenadic, Xiao-Jun Zeng","doi":"arxiv-2409.11827","DOIUrl":null,"url":null,"abstract":"Extract-then-Abstract is a naturally coherent paradigm to conduct abstractive\nsummarization with the help of salient information identified by the extractive\nmodel. Previous works that adopt this paradigm train the extractor and\nabstractor separately and introduce extra parameters to highlight the extracted\nsalients to the abstractor, which results in error accumulation and additional\ntraining costs. In this paper, we first introduce a parameter-free highlight\nmethod into the encoder-decoder framework: replacing the encoder attention mask\nwith a saliency mask in the cross-attention module to force the decoder to\nfocus only on salient parts of the input. A preliminary analysis compares\ndifferent highlight methods, demonstrating the effectiveness of our saliency\nmask. We further propose the novel extract-and-abstract paradigm, ExtAbs, which\njointly and seamlessly performs Extractive and Abstractive summarization tasks\nwithin single encoder-decoder model to reduce error accumulation. In ExtAbs,\nthe vanilla encoder is augmented to extract salients, and the vanilla decoder\nis modified with the proposed saliency mask to generate summaries. Built upon\nBART and PEGASUS, experiments on three datasets show that ExtAbs can achieve\nsuperior performance than baselines on the extractive task and performs\ncomparable, or even better than the vanilla models on the abstractive task.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extract-then-Abstract is a naturally coherent paradigm to conduct abstractive summarization with the help of salient information identified by the extractive model. Previous works that adopt this paradigm train the extractor and abstractor separately and introduce extra parameters to highlight the extracted salients to the abstractor, which results in error accumulation and additional training costs. In this paper, we first introduce a parameter-free highlight method into the encoder-decoder framework: replacing the encoder attention mask with a saliency mask in the cross-attention module to force the decoder to focus only on salient parts of the input. A preliminary analysis compares different highlight methods, demonstrating the effectiveness of our saliency mask. We further propose the novel extract-and-abstract paradigm, ExtAbs, which jointly and seamlessly performs Extractive and Abstractive summarization tasks within single encoder-decoder model to reduce error accumulation. In ExtAbs, the vanilla encoder is augmented to extract salients, and the vanilla decoder is modified with the proposed saliency mask to generate summaries. Built upon BART and PEGASUS, experiments on three datasets show that ExtAbs can achieve superior performance than baselines on the extractive task and performs comparable, or even better than the vanilla models on the abstractive task.
提取与抽象:在单一编码器-解码器框架内统一提取与抽象摘要法
先提取后抽象是一种自然连贯的范式,可借助提取模型识别出的突出信息进行抽象摘要。以往采用这种范式的研究分别对提取器和抽象器进行训练,并引入额外的参数来向抽象器突出提取对象,从而导致错误累积和额外的训练成本。在本文中,我们首先在编码器-解码器框架中引入了一种无参数高亮方法:在交叉注意力模块中用显著性掩码取代编码器注意力掩码,迫使解码器只关注输入的显著部分。初步分析比较了不同的突出方法,证明了我们的显著性掩码的有效性。我们进一步提出了新颖的提取-抽象范式 ExtAbs,它在单一编码器-解码器模型中联合、无缝地执行提取和抽象摘要任务,以减少错误积累。在 ExtAbs 中,对 vanilla 编码器进行增强以提取显著性,而 vanilla 解码器则使用建议的显著性掩码进行修改以生成摘要。以 BART 和 PEGASUS 为基础,在三个数据集上进行的实验表明,ExtAbs 在提取任务上的表现优于基线,在抽象任务上的表现与 vanilla 模型相当,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信