MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts

Tianle Gu, Kexin Huang, Ruilin Luo, Yuanqi Yao, Yujiu Yang, Yan Teng, Yingchun Wang
{"title":"MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts","authors":"Tianle Gu, Kexin Huang, Ruilin Luo, Yuanqi Yao, Yujiu Yang, Yan Teng, Yingchun Wang","doi":"arxiv-2409.11844","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) can memorize sensitive information, raising\nconcerns about potential misuse. LLM Unlearning, a post-hoc approach to remove\nthis information from trained LLMs, offers a promising solution to mitigate\nthese risks. However, previous practices face three key challenges: 1. Utility:\nsuccessful unlearning often causes catastrophic collapse on unrelated tasks. 2.\nEfficiency: many methods either involve adding similarly sized models, which\nslows down unlearning or inference, or require retain data that are difficult\nto obtain. 3. Robustness: even effective methods may still leak data via\nextraction techniques. To address these challenges, we propose MEOW, a simple\nyet effective gradient descent-based unlearning method. Specifically, we use an\noffline LLM to generate a set of inverted facts. Then, we design a new metric,\nMEMO, to quantify memorization in LLMs. Finally, based on the signals provided\nby MEMO, we select the most appropriate set of inverted facts and finetune the\nmodel based on them. We evaluate MEOW on the commonly used unlearn benchmark,\nToFU, with Llama2-7B-Chat and Phi-1.5B, and test it on both NLU and NLG tasks.\nResults demonstrate significant improvement of MEOW in forget quality without\nsubstantial loss in model utility. Meanwhile, MEOW does not exhibit significant\ndegradation in NLU or NLG capabilities, and there is even a slight improvement\nin NLU performance.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) can memorize sensitive information, raising concerns about potential misuse. LLM Unlearning, a post-hoc approach to remove this information from trained LLMs, offers a promising solution to mitigate these risks. However, previous practices face three key challenges: 1. Utility: successful unlearning often causes catastrophic collapse on unrelated tasks. 2. Efficiency: many methods either involve adding similarly sized models, which slows down unlearning or inference, or require retain data that are difficult to obtain. 3. Robustness: even effective methods may still leak data via extraction techniques. To address these challenges, we propose MEOW, a simple yet effective gradient descent-based unlearning method. Specifically, we use an offline LLM to generate a set of inverted facts. Then, we design a new metric, MEMO, to quantify memorization in LLMs. Finally, based on the signals provided by MEMO, we select the most appropriate set of inverted facts and finetune the model based on them. We evaluate MEOW on the commonly used unlearn benchmark, ToFU, with Llama2-7B-Chat and Phi-1.5B, and test it on both NLU and NLG tasks. Results demonstrate significant improvement of MEOW in forget quality without substantial loss in model utility. Meanwhile, MEOW does not exhibit significant degradation in NLU or NLG capabilities, and there is even a slight improvement in NLU performance.
MEOW:通过倒置事实进行 MEMOry 监督 LLM 解学习
大型语言模型(LLM)可以记忆敏感信息,这引发了对潜在滥用的担忧。LLM Unlearning 是一种从训练有素的 LLM 中删除这些信息的事后方法,它为降低这些风险提供了一种前景广阔的解决方案。然而,以往的做法面临三大挑战:1.1.实用性:成功解除学习往往会导致无关任务的灾难性崩溃。2.效率:许多方法要么涉及添加类似大小的模型,从而减慢解除学习或推理的速度,要么需要保留难以获得的数据。3.3.鲁棒性:即使是有效的方法,也可能会通过提取技术泄露数据。为了应对这些挑战,我们提出了 MEOW,一种简单而有效的基于梯度下降的解学习方法。具体来说,我们使用离线 LLM 生成一组倒置事实。然后,我们设计了一个新指标 MEMO 来量化 LLM 中的记忆。最后,根据 MEMO 提供的信号,我们选择最合适的倒置事实集,并在此基础上对模型进行微调。我们利用 Llama2-7B-Chat 和 Phi-1.5B 评估了 MEOW 在常用的未学习基准 ToFU 上的表现,并在 NLU 和 NLG 任务上进行了测试。同时,MEOW 在 NLU 和 NLG 能力方面也没有表现出明显的退化,甚至在 NLU 性能方面还略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信