Bo Liu, Liming Zhan, Yujie Feng, Zexin Lu, Chengqiang Xie, Lei Xue, Xiao-Ming Wu, Albert Y. S. Lam
{"title":"Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection","authors":"Bo Liu, Liming Zhan, Yujie Feng, Zexin Lu, Chengqiang Xie, Lei Xue, Xiao-Ming Wu, Albert Y. S. Lam","doi":"arxiv-2409.11114","DOIUrl":null,"url":null,"abstract":"In the realm of task-oriented dialogue systems, a robust intent detection\nmechanism must effectively handle malformed utterances encountered in\nreal-world scenarios. This study presents a novel fine-tuning framework for\nlarge language models (LLMs) aimed at enhancing in-distribution (ID) intent\nclassification and out-of-distribution (OOD) intent detection, which utilizes\nsemantic matching with prototypes derived from ID class names. By harnessing\nthe highly distinguishable representations of LLMs, we construct semantic\nprototypes for each ID class using a diversity-grounded prompt tuning approach.\nWe rigorously test our framework in a challenging OOD context, where ID and OOD\nclasses are semantically close yet distinct, referred to as \\emph{near} OOD\ndetection. For a thorough assessment, we benchmark our method against the\nprevalent fine-tuning approaches. The experimental findings reveal that our\nmethod demonstrates superior performance in both few-shot ID intent\nclassification and near-OOD intent detection tasks.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of task-oriented dialogue systems, a robust intent detection
mechanism must effectively handle malformed utterances encountered in
real-world scenarios. This study presents a novel fine-tuning framework for
large language models (LLMs) aimed at enhancing in-distribution (ID) intent
classification and out-of-distribution (OOD) intent detection, which utilizes
semantic matching with prototypes derived from ID class names. By harnessing
the highly distinguishable representations of LLMs, we construct semantic
prototypes for each ID class using a diversity-grounded prompt tuning approach.
We rigorously test our framework in a challenging OOD context, where ID and OOD
classes are semantically close yet distinct, referred to as \emph{near} OOD
detection. For a thorough assessment, we benchmark our method against the
prevalent fine-tuning approaches. The experimental findings reveal that our
method demonstrates superior performance in both few-shot ID intent
classification and near-OOD intent detection tasks.