Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse

Maojia Song, Shang Hong Sim, Rishabh Bhardwaj, Hai Leong Chieu, Navonil Majumder, Soujanya Poria
{"title":"Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse","authors":"Maojia Song, Shang Hong Sim, Rishabh Bhardwaj, Hai Leong Chieu, Navonil Majumder, Soujanya Poria","doi":"arxiv-2409.11242","DOIUrl":null,"url":null,"abstract":"LLMs are an integral part of retrieval-augmented generation (RAG) systems.\nWhile many studies focus on evaluating the quality of end-to-end RAG systems,\nthere is a lack of research on understanding the appropriateness of an LLM for\nthe RAG task. Thus, we introduce a new metric, Trust-Score, that provides a\nholistic evaluation of the trustworthiness of LLMs in an RAG framework. We show\nthat various prompting methods, such as in-context learning, fail to adapt LLMs\neffectively to the RAG task. Thus, we propose Trust-Align, a framework to align\nLLMs for higher Trust-Score. LLaMA-3-8b, aligned with our method, significantly\noutperforms open-source LLMs of comparable sizes on ASQA (up 10.7), QAMPARI (up\n29.2) and ELI5 (up 14.9). We release our code at:\nhttps://github.com/declare-lab/trust-align.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

LLMs are an integral part of retrieval-augmented generation (RAG) systems. While many studies focus on evaluating the quality of end-to-end RAG systems, there is a lack of research on understanding the appropriateness of an LLM for the RAG task. Thus, we introduce a new metric, Trust-Score, that provides a holistic evaluation of the trustworthiness of LLMs in an RAG framework. We show that various prompting methods, such as in-context learning, fail to adapt LLMs effectively to the RAG task. Thus, we propose Trust-Align, a framework to align LLMs for higher Trust-Score. LLaMA-3-8b, aligned with our method, significantly outperforms open-source LLMs of comparable sizes on ASQA (up 10.7), QAMPARI (up 29.2) and ELI5 (up 14.9). We release our code at: https://github.com/declare-lab/trust-align.
通过基础归因和学会拒绝来衡量和提高 RAG 中法律硕士的可信度
尽管许多研究都侧重于评估端到端 RAG 系统的质量,但在了解 LLM 是否适合 RAG 任务方面却缺乏研究。因此,我们引入了一个新指标--信任分数(Trust-Score),对 RAG 框架中 LLM 的可信度进行整体评估。我们的研究表明,各种提示方法(如上下文学习)都无法使 LLM 有效地适应 RAG 任务。因此,我们提出了 Trust-Align(信任对齐)--一种对齐 LLM 以获得更高的信任分数的框架。采用我们的方法对齐的 LLaMA-3-8b 在 ASQA(提高 10.7)、QAMPARI(提高 29.2)和 ELI5(提高 14.9)上的表现明显优于同等规模的开源 LLM。我们发布了我们的代码:https://github.com/declare-lab/trust-align。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信