On the tensorization of the variational distance

Aryeh Kontorovich
{"title":"On the tensorization of the variational distance","authors":"Aryeh Kontorovich","doi":"arxiv-2409.10368","DOIUrl":null,"url":null,"abstract":"If one seeks to estimate the total variation between two product measures\n$||P^\\otimes_{1:n}-Q^\\otimes_{1:n}||$ in terms of their marginal TV sequence\n$\\delta=(||P_1-Q_1||,||P_2-Q_2||,\\ldots,||P_n-Q_n||)$, then trivial upper and\nlower bounds are provided by$ ||\\delta||_\\infty \\le\n||P^\\otimes_{1:n}-Q^\\otimes_{1:n}||\\le||\\delta||_1$. We improve the lower bound\nto $||\\delta||_2\\lesssim||P^\\otimes_{1:n}-Q^\\otimes_{1:n}||$, thereby reducing\nthe gap between the upper and lower bounds from $\\sim n$ to $\\sim\\sqrt $.\nFurthermore, we show that {\\em any} estimate on\n$||P^\\otimes_{1:n}-Q^\\otimes_{1:n}||$ expressed in terms of $\\delta$ must\nnecessarily exhibit a gap of $\\sim\\sqrt n$ between the upper and lower bounds\nin the worst case, establishing a sense in which our estimate is optimal.\nFinally, we identify a natural class of distributions for which $||\\delta||_2$\napproximates the TV distance up to absolute multiplicative constants.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If one seeks to estimate the total variation between two product measures $||P^\otimes_{1:n}-Q^\otimes_{1:n}||$ in terms of their marginal TV sequence $\delta=(||P_1-Q_1||,||P_2-Q_2||,\ldots,||P_n-Q_n||)$, then trivial upper and lower bounds are provided by$ ||\delta||_\infty \le ||P^\otimes_{1:n}-Q^\otimes_{1:n}||\le||\delta||_1$. We improve the lower bound to $||\delta||_2\lesssim||P^\otimes_{1:n}-Q^\otimes_{1:n}||$, thereby reducing the gap between the upper and lower bounds from $\sim n$ to $\sim\sqrt $. Furthermore, we show that {\em any} estimate on $||P^\otimes_{1:n}-Q^\otimes_{1:n}||$ expressed in terms of $\delta$ must necessarily exhibit a gap of $\sim\sqrt n$ between the upper and lower bounds in the worst case, establishing a sense in which our estimate is optimal. Finally, we identify a natural class of distributions for which $||\delta||_2$ approximates the TV distance up to absolute multiplicative constants.
关于变分距离的张量化
如果要估计两个产品测量值之间的总变化$||P^\otimes_{1:n}-Q^\otimes_{1:n}|$的边际TV序列$|delta=(||P_1-Q_1||,||P_2-Q_2||,\ldots,||P_n-Q_n||)$,那么$||delta||_infty \le||P^\otimes_{1:n}-Q^\otimes_{1:n}||\le|||delta||_1$提供了微不足道的上界和下界。我们将下界改进为 $|||\delta||_2\lesssim||P^\otimes_{1:n}-Q^\otimes_{1:n}||$,从而将上界和下界之间的差距从 $\sim n$ 缩小到 $\sim/sqrt$。此外,我们还证明了{em any}估计$||P^\otimes_{1:n}-Q^\otimes_{1:n}||$用$\delta$表示时,在最坏的情况下,上界和下界之间必须有$\sim\sqrt n$的差距,从而确立了我们的估计在某种意义上是最优的。最后,我们确定了一类自然的分布,对于这类分布,$||\delta||_2$近似于电视距离,直到绝对乘法常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信