Notas sobre Teoría de colas y algunas aplicaciones

Carlos E. Martínez-Rodríguez
{"title":"Notas sobre Teoría de colas y algunas aplicaciones","authors":"Carlos E. Martínez-Rodríguez","doi":"arxiv-2409.10735","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive review of stochastic processes, with a\nparticular focus on Markov chains and jump processes. The main results related\nto queuing systems are analyzed. Additionally, conditions that ensure the\nstability, or ergodicity, of such systems are presented. The paper also\ndiscusses stability results for queuing networks and their extension to\nvisiting systems. Finally, key contributions concerning the Probability\nGenerating Function, an essential tool in the analysis of the aforementioned\nprocesses, are introduced. The review is conducted from the perspective of\nqueuing theory, grounded in the Kendall-Lee notation, emphasizing stability\nresults and the computation of performance measures based on the specific\ncharacteristics of each process.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive review of stochastic processes, with a particular focus on Markov chains and jump processes. The main results related to queuing systems are analyzed. Additionally, conditions that ensure the stability, or ergodicity, of such systems are presented. The paper also discusses stability results for queuing networks and their extension to visiting systems. Finally, key contributions concerning the Probability Generating Function, an essential tool in the analysis of the aforementioned processes, are introduced. The review is conducted from the perspective of queuing theory, grounded in the Kendall-Lee notation, emphasizing stability results and the computation of performance measures based on the specific characteristics of each process.
排队理论及一些应用说明
本文全面评述了随机过程,尤其侧重于马尔可夫链和跳跃过程。本文分析了与排队系统相关的主要结果。此外,还介绍了确保此类系统稳定性或遍历性的条件。论文还讨论了排队网络的稳定性结果,并将其扩展到驻留系统。最后,介绍了概率生成函数的主要贡献,它是分析上述过程的重要工具。这篇综述从排队理论的角度出发,以肯达尔-李符号为基础,强调稳定性结果和基于每个过程具体特征的性能指标的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信