Abelian and stochastic sandpile models on complete bipartite graphs

Thomas Selig, Haoyue Zhu
{"title":"Abelian and stochastic sandpile models on complete bipartite graphs","authors":"Thomas Selig, Haoyue Zhu","doi":"arxiv-2409.11811","DOIUrl":null,"url":null,"abstract":"In the sandpile model, vertices of a graph are allocated grains of sand. At\neach unit of time, a grain is added to a randomly chosen vertex. If that causes\nits number of grains to exceed its degree, that vertex is called unstable, and\ntopples. In the Abelian sandpile model (ASM), topplings are deterministic,\nwhereas in the stochastic sandpile model (SSM) they are random. We study the\nASM and SSM on complete bipartite graphs. For the SSM, we provide a stochastic\nversion of Dhar's burning algorithm to check if a given (stable) configuration\nis recurrent or not, with linear complexity. We also exhibit a bijection\nbetween sorted recurrent configurations and pairs of compatible Ferrers\ndiagrams. We then provide a similar bijection for the ASM, and also interpret\nits recurrent configurations in terms of labelled Motzkin paths.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the sandpile model, vertices of a graph are allocated grains of sand. At each unit of time, a grain is added to a randomly chosen vertex. If that causes its number of grains to exceed its degree, that vertex is called unstable, and topples. In the Abelian sandpile model (ASM), topplings are deterministic, whereas in the stochastic sandpile model (SSM) they are random. We study the ASM and SSM on complete bipartite graphs. For the SSM, we provide a stochastic version of Dhar's burning algorithm to check if a given (stable) configuration is recurrent or not, with linear complexity. We also exhibit a bijection between sorted recurrent configurations and pairs of compatible Ferrers diagrams. We then provide a similar bijection for the ASM, and also interpret its recurrent configurations in terms of labelled Motzkin paths.
完整双向图上的非线性和随机沙堆模型
在沙堆模型中,图形的顶点被分配为沙粒。在一个教学单位时间内,随机选择一个顶点添加一粒沙。如果沙粒的数量超过了顶点的度数,那么这个顶点就被称为不稳定顶点。在阿贝尔沙堆模型(ASM)中,顶点是确定的,而在随机沙堆模型(SSM)中,顶点是随机的。我们研究了完整双向图上的 ASM 和 SSM。对于 SSM,我们提供了 Dhar 燃烧算法的随机版本,以线性复杂度检查给定(稳定)配置是否是循环的。我们还展示了排序递归配置与兼容费勒斯图对之间的双射关系。然后,我们为 ASM 提供了类似的偏射,并用带标签的莫兹金路径来解释其递归配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信