SpreadLine: Visualizing Egocentric Dynamic Influence

Yun-Hsin Kuo;Dongyu Liu;Kwan-Liu Ma
{"title":"SpreadLine: Visualizing Egocentric Dynamic Influence","authors":"Yun-Hsin Kuo;Dongyu Liu;Kwan-Liu Ma","doi":"10.1109/TVCG.2024.3456373","DOIUrl":null,"url":null,"abstract":"Egocentric networks, often visualized as node-link diagrams, portray the complex relationship (link) dynamics between an entity (node) and others. However, common analytics tasks are multifaceted, encompassing interactions among four key aspects: strength, function, structure, and content. Current node-link visualization designs may fall short, focusing narrowly on certain aspects and neglecting the holistic, dynamic nature of egocentric networks. To bridge this gap, we introduce SpreadLine, a novel visualization framework designed to enable the visual exploration of egocentric networks from these four aspects at the microscopic level. Leveraging the intuitive appeal of storyline visualizations, SpreadLine adopts a storyline-based design to represent entities and their evolving relationships. We further encode essential topological information in the layout and condense the contextual information in a metro map metaphor, allowing for a more engaging and effective way to explore temporal and attribute-based information. To guide our work, with a thorough review of pertinent literature, we have distilled a task taxonomy that addresses the analytical needs specific to egocentric network exploration. Acknowledging the diverse analytical requirements of users, SpreadLine offers customizable encodings to enable users to tailor the framework for their tasks. We demonstrate the efficacy and general applicability of SpreadLine through three diverse real-world case studies (disease surveillance, social media trends, and academic career evolution) and a usability study.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"1050-1060"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680192/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Egocentric networks, often visualized as node-link diagrams, portray the complex relationship (link) dynamics between an entity (node) and others. However, common analytics tasks are multifaceted, encompassing interactions among four key aspects: strength, function, structure, and content. Current node-link visualization designs may fall short, focusing narrowly on certain aspects and neglecting the holistic, dynamic nature of egocentric networks. To bridge this gap, we introduce SpreadLine, a novel visualization framework designed to enable the visual exploration of egocentric networks from these four aspects at the microscopic level. Leveraging the intuitive appeal of storyline visualizations, SpreadLine adopts a storyline-based design to represent entities and their evolving relationships. We further encode essential topological information in the layout and condense the contextual information in a metro map metaphor, allowing for a more engaging and effective way to explore temporal and attribute-based information. To guide our work, with a thorough review of pertinent literature, we have distilled a task taxonomy that addresses the analytical needs specific to egocentric network exploration. Acknowledging the diverse analytical requirements of users, SpreadLine offers customizable encodings to enable users to tailor the framework for their tasks. We demonstrate the efficacy and general applicability of SpreadLine through three diverse real-world case studies (disease surveillance, social media trends, and academic career evolution) and a usability study.
SpreadLine:以自我为中心的动态影响可视化
以自我为中心的网络通常可视化为节点-链接图,描绘实体(节点)与其他实体之间复杂的关系(链接)动态。然而,常见的分析任务是多方面的,包括强度、功能、结构和内容这四个关键方面的互动。目前的节点-链接可视化设计可能存在不足,只关注某些方面,而忽视了以自我为中心的网络的整体性和动态性。为了弥补这一不足,我们推出了新颖的可视化框架 SpreadLine,旨在从微观层面的这四个方面对以自我为中心的网络进行可视化探索。利用故事情节可视化的直观吸引力,SpreadLine 采用了基于故事情节的设计来表示实体及其不断变化的关系。我们在布局中进一步编码了重要的拓扑信息,并在地铁图隐喻中浓缩了上下文信息,从而以更吸引人、更有效的方式来探索基于时间和属性的信息。为了指导我们的工作,通过对相关文献的深入研究,我们提炼出了一种任务分类法,以满足以自我为中心的网络探索所特有的分析需求。由于用户的分析需求多种多样,SpreadLine 提供了可定制的编码,使用户能够根据自己的任务定制框架。我们通过三个不同的真实世界案例研究(疾病监测、社交媒体趋势和学术职业发展)和一项可用性研究,证明了 SpreadLine 的有效性和普遍适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信