A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ata Kabán, Efstratios Palias
{"title":"A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis","authors":"Ata Kabán, Efstratios Palias","doi":"10.1007/s11009-024-10105-x","DOIUrl":null,"url":null,"abstract":"<p>We give an upper bound on the <i>conditional error</i> of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the <i>out-of-sample error</i>, in contrast with the simpler but uninformative <i>estimated error</i>, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10105-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We give an upper bound on the conditional error of Quadratic Discriminant Analysis (QDA), conditioned on parameter estimates. In the case of maximum likelihood estimation (MLE), our bound recovers the well-known Chernoff and Bhattacharyya bounds in the infinite sample limit. We perform an empirical assessment of the behaviour of our bound in a finite sample MLE setting, demonstrating good agreement with the out-of-sample error, in contrast with the simpler but uninformative estimated error, which exhibits unnatural behaviour with respect to the sample size. Furthermore, our conditional error bound is applicable whenever the QDA decision function employs parameter estimates that differ from the true parameters, including regularised QDA.

Abstract Image

二次判别分析的巴塔查里亚型条件误差约束
我们给出了以参数估计为条件的二次判别分析(QDA)条件误差上限。在最大似然估计(MLE)情况下,我们的界值恢复了无限样本极限下著名的切尔诺夫界值和巴塔查里亚界值。我们对有限样本 MLE 环境下的约束行为进行了实证评估,结果表明我们的约束与样本外误差非常吻合,而与之相反的是,估计误差虽然简单,但信息量却很小,它在样本量方面表现出不自然的行为。此外,只要 QDA 决策函数采用的参数估计与真实参数不同,包括正则化 QDA,我们的条件误差约束都适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信