Federated Learning with Integrated Sensing, Communication, and Computation: Frameworks and Performance Analysis

Yipeng Liang, Qimei Chen, Hao Jiang
{"title":"Federated Learning with Integrated Sensing, Communication, and Computation: Frameworks and Performance Analysis","authors":"Yipeng Liang, Qimei Chen, Hao Jiang","doi":"arxiv-2409.11240","DOIUrl":null,"url":null,"abstract":"With the emergence of integrated sensing, communication, and computation\n(ISCC) in the upcoming 6G era, federated learning with ISCC (FL-ISCC),\nintegrating sample collection, local training, and parameter exchange and\naggregation, has garnered increasing interest for enhancing training\nefficiency. Currently, FL-ISCC primarily includes two algorithms: FedAVG-ISCC\nand FedSGD-ISCC. However, the theoretical understanding of the performance and\nadvantages of these algorithms remains limited. To address this gap, we\ninvestigate a general FL-ISCC framework, implementing both FedAVG-ISCC and\nFedSGD-ISCC. We experimentally demonstrate the substantial potential of the\nISCC framework in reducing latency and energy consumption in FL. Furthermore,\nwe provide a theoretical analysis and comparison. The results reveal that:1)\nBoth sample collection and communication errors negatively impact algorithm\nperformance, highlighting the need for careful design to optimize FL-ISCC\napplications. 2) FedAVG-ISCC performs better than FedSGD-ISCC under IID data\ndue to its advantage with multiple local updates. 3) FedSGD-ISCC is more robust\nthan FedAVG-ISCC under non-IID data, where the multiple local updates in\nFedAVG-ISCC worsen performance as non-IID data increases. FedSGD-ISCC maintains\nperformance levels similar to IID conditions. 4) FedSGD-ISCC is more resilient\nto communication errors than FedAVG-ISCC, which suffers from significant\nperformance degradation as communication errors increase.Extensive simulations\nconfirm the effectiveness of the FL-ISCC framework and validate our theoretical\nanalysis.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the emergence of integrated sensing, communication, and computation (ISCC) in the upcoming 6G era, federated learning with ISCC (FL-ISCC), integrating sample collection, local training, and parameter exchange and aggregation, has garnered increasing interest for enhancing training efficiency. Currently, FL-ISCC primarily includes two algorithms: FedAVG-ISCC and FedSGD-ISCC. However, the theoretical understanding of the performance and advantages of these algorithms remains limited. To address this gap, we investigate a general FL-ISCC framework, implementing both FedAVG-ISCC and FedSGD-ISCC. We experimentally demonstrate the substantial potential of the ISCC framework in reducing latency and energy consumption in FL. Furthermore, we provide a theoretical analysis and comparison. The results reveal that:1) Both sample collection and communication errors negatively impact algorithm performance, highlighting the need for careful design to optimize FL-ISCC applications. 2) FedAVG-ISCC performs better than FedSGD-ISCC under IID data due to its advantage with multiple local updates. 3) FedSGD-ISCC is more robust than FedAVG-ISCC under non-IID data, where the multiple local updates in FedAVG-ISCC worsen performance as non-IID data increases. FedSGD-ISCC maintains performance levels similar to IID conditions. 4) FedSGD-ISCC is more resilient to communication errors than FedAVG-ISCC, which suffers from significant performance degradation as communication errors increase.Extensive simulations confirm the effectiveness of the FL-ISCC framework and validate our theoretical analysis.
集成传感、通信和计算的联合学习:框架和性能分析
在即将到来的 6G 时代,随着集成传感、通信和计算(ISCC)技术的出现,集样本采集、本地训练、参数交换和聚合于一体的 ISCC 联合学习(FL-ISCC)在提高训练效率方面受到越来越多的关注。目前,FL-ISCC 主要包括两种算法:FedAVG-ISCC和FedSGD-ISCC。然而,人们对这些算法的性能和优势的理论认识仍然有限。为了弥补这一不足,我们研究了一个通用的 FL-ISCC 框架,同时实现了 FedAVG-ISCC 和 FedSGD-ISCC。我们通过实验证明了 ISCC 框架在减少 FL 延迟和能耗方面的巨大潜力。此外,我们还进行了理论分析和比较。结果表明:1)样本收集和通信错误都会对算法性能产生负面影响,因此需要精心设计以优化 FL-ISCC 应用。2)FedAVG-ISCC 在 IID 数据下的性能优于 FedSGD-ISCC,这是因为它具有多次局部更新的优势。3) 在非 IID 数据下,FedSGD-ISCC 比 FedAVG-ISCC 更稳健,因为随着非 IID 数据的增加,FedAVG-ISCC 的多次本地更新会使性能下降。FedSGD-ISCC 可保持与 IID 条件类似的性能水平。4) FedSGD-ISCC 比 FedAVG-ISCC 更能抵御通信错误,后者的性能会随着通信错误的增加而显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信