Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes

Nikita Kiselev, Andrey Grabovoy
{"title":"Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes","authors":"Nikita Kiselev, Andrey Grabovoy","doi":"arxiv-2409.11995","DOIUrl":null,"url":null,"abstract":"The loss landscape of neural networks is a critical aspect of their training,\nand understanding its properties is essential for improving their performance.\nIn this paper, we investigate how the loss surface changes when the sample size\nincreases, a previously unexplored issue. We theoretically analyze the\nconvergence of the loss landscape in a fully connected neural network and\nderive upper bounds for the difference in loss function values when adding a\nnew object to the sample. Our empirical study confirms these results on various\ndatasets, demonstrating the convergence of the loss function surface for image\nclassification tasks. Our findings provide insights into the local geometry of\nneural loss landscapes and have implications for the development of sample size\ndetermination techniques.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.
揭开赫塞斯的面纱:损失函数景观平滑收敛的关键
神经网络的损失面是其训练的一个关键方面,了解其特性对于提高神经网络的性能至关重要。在本文中,我们研究了当样本量增加时损失面如何变化,这是一个以前从未探讨过的问题。我们从理论上分析了全连接神经网络中损失面的收敛性,并得出了在样本中添加新对象时损失函数值差异的上限。我们的实证研究在各种数据集上证实了这些结果,证明了图像分类任务中损失函数面的收敛性。我们的研究结果为神经损失景观的局部几何提供了见解,并对样本大小确定技术的发展产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信