An Efficient Model-Agnostic Approach for Uncertainty Estimation in Data-Restricted Pedometric Applications

Viacheslav Barkov, Jonas Schmidinger, Robin Gebbers, Martin Atzmueller
{"title":"An Efficient Model-Agnostic Approach for Uncertainty Estimation in Data-Restricted Pedometric Applications","authors":"Viacheslav Barkov, Jonas Schmidinger, Robin Gebbers, Martin Atzmueller","doi":"arxiv-2409.11985","DOIUrl":null,"url":null,"abstract":"This paper introduces a model-agnostic approach designed to enhance\nuncertainty estimation in the predictive modeling of soil properties, a crucial\nfactor for advancing pedometrics and the practice of digital soil mapping. For\naddressing the typical challenge of data scarcity in soil studies, we present\nan improved technique for uncertainty estimation. This method is based on the\ntransformation of regression tasks into classification problems, which not only\nallows for the production of reliable uncertainty estimates but also enables\nthe application of established machine learning algorithms with competitive\nperformance that have not yet been utilized in pedometrics. Empirical results\nfrom datasets collected from two German agricultural fields showcase the\npractical application of the proposed methodology. Our results and findings\nsuggest that the proposed approach has the potential to provide better\nuncertainty estimation than the models commonly used in pedometrics.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a model-agnostic approach designed to enhance uncertainty estimation in the predictive modeling of soil properties, a crucial factor for advancing pedometrics and the practice of digital soil mapping. For addressing the typical challenge of data scarcity in soil studies, we present an improved technique for uncertainty estimation. This method is based on the transformation of regression tasks into classification problems, which not only allows for the production of reliable uncertainty estimates but also enables the application of established machine learning algorithms with competitive performance that have not yet been utilized in pedometrics. Empirical results from datasets collected from two German agricultural fields showcase the practical application of the proposed methodology. Our results and findings suggest that the proposed approach has the potential to provide better uncertainty estimation than the models commonly used in pedometrics.
在数据受限的计步应用中进行不确定性估计的高效模型诊断方法
本文介绍了一种与模型无关的方法,旨在加强土壤特性预测建模中的不确定性估计,这是推进土壤测量学和数字土壤制图实践的关键因素。为了解决土壤研究中数据稀缺的典型难题,我们提出了一种改进的不确定性估计技术。该方法基于将回归任务转化为分类问题,这不仅可以产生可靠的不确定性估计,还可以应用尚未在测绘学中使用过的具有竞争力性能的成熟机器学习算法。从德国两个农田收集的数据集得出的经验结果展示了所提方法的实际应用。我们的结果和发现表明,与计步学中常用的模型相比,所提出的方法有可能提供更好的不确定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信