Conditional sampling within generative diffusion models

Zheng Zhao, Ziwei Luo, Jens Sjölund, Thomas B. Schön
{"title":"Conditional sampling within generative diffusion models","authors":"Zheng Zhao, Ziwei Luo, Jens Sjölund, Thomas B. Schön","doi":"arxiv-2409.09650","DOIUrl":null,"url":null,"abstract":"Generative diffusions are a powerful class of Monte Carlo samplers that\nleverage bridging Markov processes to approximate complex, high-dimensional\ndistributions, such as those found in image processing and language models.\nDespite their success in these domains, an important open challenge remains:\nextending these techniques to sample from conditional distributions, as\nrequired in, for example, Bayesian inverse problems. In this paper, we present\na comprehensive review of existing computational approaches to conditional\nsampling within generative diffusion models. Specifically, we highlight key\nmethodologies that either utilise the joint distribution, or rely on\n(pre-trained) marginal distributions with explicit likelihoods, to construct\nconditional generative samplers.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative diffusions are a powerful class of Monte Carlo samplers that leverage bridging Markov processes to approximate complex, high-dimensional distributions, such as those found in image processing and language models. Despite their success in these domains, an important open challenge remains: extending these techniques to sample from conditional distributions, as required in, for example, Bayesian inverse problems. In this paper, we present a comprehensive review of existing computational approaches to conditional sampling within generative diffusion models. Specifically, we highlight key methodologies that either utilise the joint distribution, or rely on (pre-trained) marginal distributions with explicit likelihoods, to construct conditional generative samplers.
生成式扩散模型中的条件采样
生成扩散是一类功能强大的蒙特卡罗采样器,它利用桥接马尔可夫过程来逼近复杂的高维分布,如图像处理和语言模型中的分布。尽管它们在这些领域取得了成功,但一个重要的挑战依然存在:将这些技术扩展到条件分布的采样,如贝叶斯逆问题中所要求的那样。在本文中,我们全面回顾了生成扩散模型中条件采样的现有计算方法。具体来说,我们重点介绍了利用联合分布或依赖具有显式似然的(预训练)边际分布来构建条件生成采样器的关键方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信