Active Learning to Guide Labeling Efforts for Question Difficulty Estimation

Arthur Thuy, Ekaterina Loginova, Dries F. Benoit
{"title":"Active Learning to Guide Labeling Efforts for Question Difficulty Estimation","authors":"Arthur Thuy, Ekaterina Loginova, Dries F. Benoit","doi":"arxiv-2409.09258","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a surge in research on Question Difficulty\nEstimation (QDE) using natural language processing techniques.\nTransformer-based neural networks achieve state-of-the-art performance,\nprimarily through supervised methods but with an isolated study in unsupervised\nlearning. While supervised methods focus on predictive performance, they\nrequire abundant labeled data. On the other hand, unsupervised methods do not\nrequire labeled data but rely on a different evaluation metric that is also\ncomputationally expensive in practice. This work bridges the research gap by\nexploring active learning for QDE, a supervised human-in-the-loop approach\nstriving to minimize the labeling efforts while matching the performance of\nstate-of-the-art models. The active learning process iteratively trains on a\nlabeled subset, acquiring labels from human experts only for the most\ninformative unlabeled data points. Furthermore, we propose a novel acquisition\nfunction PowerVariance to add the most informative samples to the labeled set,\na regression extension to the PowerBALD function popular in classification. We\nemploy DistilBERT for QDE and identify informative samples by applying Monte\nCarlo dropout to capture epistemic uncertainty in unlabeled samples. The\nexperiments demonstrate that active learning with PowerVariance acquisition\nachieves a performance close to fully supervised models after labeling only 10%\nof the training data. The proposed methodology promotes the responsible use of\neducational resources, makes QDE tools more accessible to course instructors,\nand is promising for other applications such as personalized support systems\nand question-answering tools.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there has been a surge in research on Question Difficulty Estimation (QDE) using natural language processing techniques. Transformer-based neural networks achieve state-of-the-art performance, primarily through supervised methods but with an isolated study in unsupervised learning. While supervised methods focus on predictive performance, they require abundant labeled data. On the other hand, unsupervised methods do not require labeled data but rely on a different evaluation metric that is also computationally expensive in practice. This work bridges the research gap by exploring active learning for QDE, a supervised human-in-the-loop approach striving to minimize the labeling efforts while matching the performance of state-of-the-art models. The active learning process iteratively trains on a labeled subset, acquiring labels from human experts only for the most informative unlabeled data points. Furthermore, we propose a novel acquisition function PowerVariance to add the most informative samples to the labeled set, a regression extension to the PowerBALD function popular in classification. We employ DistilBERT for QDE and identify informative samples by applying Monte Carlo dropout to capture epistemic uncertainty in unlabeled samples. The experiments demonstrate that active learning with PowerVariance acquisition achieves a performance close to fully supervised models after labeling only 10% of the training data. The proposed methodology promotes the responsible use of educational resources, makes QDE tools more accessible to course instructors, and is promising for other applications such as personalized support systems and question-answering tools.
通过主动学习引导问题难度估算的标记工作
近年来,利用自然语言处理技术进行问题难度估计(QDE)的研究激增。基于变压器的神经网络主要通过有监督的方法实现最先进的性能,但在无监督学习方面也有个别研究。有监督方法侧重于预测性能,但需要大量标记数据。另一方面,无监督方法不需要标注数据,但依赖于不同的评估指标,在实践中计算成本也很高。本研究通过探索 QDE 的主动学习弥合了这一研究空白,这是一种有监督的人在回路中的方法,旨在最大限度地减少标注工作,同时与最先进模型的性能相匹配。主动学习过程在已标注的子集上进行迭代训练,只针对最有信息量的未标注数据点从人类专家那里获取标签。此外,我们还提出了一种新颖的获取函数 PowerVariance,用于将信息量最大的样本添加到标注集,这是对分类中常用的 PowerBALD 函数的回归扩展。我们在 QDE 中使用了 DistilBERT,并通过应用 MonteCarlo dropout 来识别信息样本,以捕捉未标记样本中的认识不确定性。实验证明,使用 PowerVariance 获取的主动学习只需标注 10% 的训练数据,就能获得接近完全监督模型的性能。所提出的方法促进了对教育资源的负责任使用,使课程讲师更容易获得 QDE 工具,并有望应用于其他领域,如个性化支持系统和问题解答工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信