Optimization of fused deposition modelling printing parameters using hybrid GA-fuzzy evolutionary algorithm

Sandeep Deswal, Ashish Kaushik, Ramesh Kumar Garg, Ravinder Kumar Sahdev, Deepak Chhabra
{"title":"Optimization of fused deposition modelling printing parameters using hybrid GA-fuzzy evolutionary algorithm","authors":"Sandeep Deswal, Ashish Kaushik, Ramesh Kumar Garg, Ravinder Kumar Sahdev, Deepak Chhabra","doi":"10.1007/s12046-024-02595-9","DOIUrl":null,"url":null,"abstract":"<p>The present study investigates the compressive strength performance of polylactic acid (PLA) polymer material parts printed using the Fused Deposition Modelling (FDM) three-dimensional (3D) printing process, with a particular emphasis on various machine input parameters. The face centred central composite design matrix approach was employed for experimental modelling, which was subsequently utilised as a knowledge base for the fuzzy algorithm. A hybrid evolutionary algorithm, i.e., Genetic-Algorithm (GA) assisted with Fuzzy Logic Methodology (FLM), was used to optimize input process parameters and compressive strength of FDM technique fabricated polymer material parts. The study concluded that the maximum compressive strength observed with GA integrated FLM was 49.7303 MPa at input factors (layer thickness-0.16 mm, temperature 208°C, infill-pattern-Honeycomb, infill-density-60% and speed/extrusion velocity-41 mm/s) which is higher than the experimental (47.08 MPa) and fuzzy predicted (47.101 MPa) value. This evolutionary hybrid soft computing methodology has optimized the compressive strength of PLA polymer material parts at optimum parameters combination set.</p>","PeriodicalId":21498,"journal":{"name":"Sādhanā","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sādhanā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12046-024-02595-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the compressive strength performance of polylactic acid (PLA) polymer material parts printed using the Fused Deposition Modelling (FDM) three-dimensional (3D) printing process, with a particular emphasis on various machine input parameters. The face centred central composite design matrix approach was employed for experimental modelling, which was subsequently utilised as a knowledge base for the fuzzy algorithm. A hybrid evolutionary algorithm, i.e., Genetic-Algorithm (GA) assisted with Fuzzy Logic Methodology (FLM), was used to optimize input process parameters and compressive strength of FDM technique fabricated polymer material parts. The study concluded that the maximum compressive strength observed with GA integrated FLM was 49.7303 MPa at input factors (layer thickness-0.16 mm, temperature 208°C, infill-pattern-Honeycomb, infill-density-60% and speed/extrusion velocity-41 mm/s) which is higher than the experimental (47.08 MPa) and fuzzy predicted (47.101 MPa) value. This evolutionary hybrid soft computing methodology has optimized the compressive strength of PLA polymer material parts at optimum parameters combination set.

Abstract Image

利用混合 GA-模糊进化算法优化熔融沉积模型印刷参数
本研究调查了使用熔融沉积成型(FDM)三维(3D)打印工艺打印的聚乳酸(PLA)聚合物材料部件的抗压强度性能,重点是各种机器输入参数。实验建模采用了面心中心复合设计矩阵方法,随后将其用作模糊算法的知识库。混合进化算法,即遗传算法(GA)与模糊逻辑方法(FLM)相结合,用于优化输入工艺参数和 FDM 技术制造的聚合物材料部件的抗压强度。研究得出结论,在输入因子(层厚-0.16 毫米、温度 208°C、填充图案-蜂窝、填充密度-60%、速度/挤压速度-41 毫米/秒)为 49.7303 兆帕时,使用 GA 集成 FLM 观察到的最大抗压强度高于实验值(47.08 兆帕)和模糊预测值(47.101 兆帕)。这种进化混合软计算方法优化了聚乳酸聚合物材料部件在最佳参数组合设置下的抗压强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信