Tight Lower Bounds under Asymmetric High-Order Hölder Smoothness and Uniform Convexity

Site Bai, Brian Bullins
{"title":"Tight Lower Bounds under Asymmetric High-Order Hölder Smoothness and Uniform Convexity","authors":"Site Bai, Brian Bullins","doi":"arxiv-2409.10773","DOIUrl":null,"url":null,"abstract":"In this paper, we provide tight lower bounds for the oracle complexity of\nminimizing high-order H\\\"older smooth and uniformly convex functions.\nSpecifically, for a function whose $p^{th}$-order derivatives are H\\\"older\ncontinuous with degree $\\nu$ and parameter $H$, and that is uniformly convex\nwith degree $q$ and parameter $\\sigma$, we focus on two asymmetric cases: (1)\n$q > p + \\nu$, and (2) $q < p+\\nu$. Given up to $p^{th}$-order oracle access,\nwe establish worst-case oracle complexities of $\\Omega\\left( \\left(\n\\frac{H}{\\sigma}\\right)^\\frac{2}{3(p+\\nu)-2}\\left(\n\\frac{\\sigma}{\\epsilon}\\right)^\\frac{2(q-p-\\nu)}{q(3(p+\\nu)-2)}\\right)$ with a\ntruncated-Gaussian smoothed hard function in the first case and\n$\\Omega\\left(\\left(\\frac{H}{\\sigma}\\right)^\\frac{2}{3(p+\\nu)-2}+\n\\log^2\\left(\\frac{\\sigma^{p+\\nu}}{H^q}\\right)^\\frac{1}{p+\\nu-q}\\right)$ in the\nsecond case, for reaching an $\\epsilon$-approximate solution in terms of the\noptimality gap. Our analysis generalizes previous lower bounds for functions\nunder first- and second-order smoothness as well as those for uniformly convex\nfunctions, and furthermore our results match the corresponding upper bounds in\nthe general setting.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide tight lower bounds for the oracle complexity of minimizing high-order H\"older smooth and uniformly convex functions. Specifically, for a function whose $p^{th}$-order derivatives are H\"older continuous with degree $\nu$ and parameter $H$, and that is uniformly convex with degree $q$ and parameter $\sigma$, we focus on two asymmetric cases: (1) $q > p + \nu$, and (2) $q < p+\nu$. Given up to $p^{th}$-order oracle access, we establish worst-case oracle complexities of $\Omega\left( \left( \frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}\left( \frac{\sigma}{\epsilon}\right)^\frac{2(q-p-\nu)}{q(3(p+\nu)-2)}\right)$ with a truncated-Gaussian smoothed hard function in the first case and $\Omega\left(\left(\frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}+ \log^2\left(\frac{\sigma^{p+\nu}}{H^q}\right)^\frac{1}{p+\nu-q}\right)$ in the second case, for reaching an $\epsilon$-approximate solution in terms of the optimality gap. Our analysis generalizes previous lower bounds for functions under first- and second-order smoothness as well as those for uniformly convex functions, and furthermore our results match the corresponding upper bounds in the general setting.
非对称高阶荷尔德平滑性和均匀凸性下的严格下界
本文为最小化高阶光滑均匀凸函数的神谕复杂度提供了严格的下界。具体来说,对于一个函数,其 $p^{th}$ 阶导数是阶数为 $\nu$ 和参数为 $H$ 的连续高阶导数,并且是阶数为 $q$ 和参数为 $\sigma$ 的均匀凸函数,我们关注两种非对称情况:(1)$q > p + \nu$;(2)$q < p+ \nu$。给定最多 $p^{th}$ 的神谕访问、我们建立了 $Omega\left( \left(\frac{H}{\sigma}\right)^\frac{2}{3(p+\nu)-2}\left(\frac{sigma}{\epsilon}\right)^\frac{2(q-p-\nu)}{q(3(p+\nu)-2)}\right)$ 的最坏情况下的神谕复杂性,并对其进行了截断。在第一种情况下是高斯平滑硬函数,在第二种情况下是$Omega(left(\left(\frac{H}{sigma}\right)^\frac{2}{3(p+\nu)-2}+\log^2\left(\frac{sigma^{p+\nu}{H^q}\right)^\frac{1}{p+\nu-q}\right)$、的最优性差距达到近似解。我们的分析概括了以往一阶和二阶平滑函数以及均匀凸函数的下界,而且我们的结果与一般情况下的相应上界相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信