Robust Reinforcement Learning with Dynamic Distortion Risk Measures

Anthony Coache, Sebastian Jaimungal
{"title":"Robust Reinforcement Learning with Dynamic Distortion Risk Measures","authors":"Anthony Coache, Sebastian Jaimungal","doi":"arxiv-2409.10096","DOIUrl":null,"url":null,"abstract":"In a reinforcement learning (RL) setting, the agent's optimal strategy\nheavily depends on her risk preferences and the underlying model dynamics of\nthe training environment. These two aspects influence the agent's ability to\nmake well-informed and time-consistent decisions when facing testing\nenvironments. In this work, we devise a framework to solve robust risk-aware RL\nproblems where we simultaneously account for environmental uncertainty and risk\nwith a class of dynamic robust distortion risk measures. Robustness is\nintroduced by considering all models within a Wasserstein ball around a\nreference model. We estimate such dynamic robust risk measures using neural\nnetworks by making use of strictly consistent scoring functions, derive policy\ngradient formulae using the quantile representation of distortion risk\nmeasures, and construct an actor-critic algorithm to solve this class of robust\nrisk-aware RL problems. We demonstrate the performance of our algorithm on a\nportfolio allocation example.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a reinforcement learning (RL) setting, the agent's optimal strategy heavily depends on her risk preferences and the underlying model dynamics of the training environment. These two aspects influence the agent's ability to make well-informed and time-consistent decisions when facing testing environments. In this work, we devise a framework to solve robust risk-aware RL problems where we simultaneously account for environmental uncertainty and risk with a class of dynamic robust distortion risk measures. Robustness is introduced by considering all models within a Wasserstein ball around a reference model. We estimate such dynamic robust risk measures using neural networks by making use of strictly consistent scoring functions, derive policy gradient formulae using the quantile representation of distortion risk measures, and construct an actor-critic algorithm to solve this class of robust risk-aware RL problems. We demonstrate the performance of our algorithm on a portfolio allocation example.
利用动态失真风险度量进行稳健强化学习
在强化学习(RL)环境中,代理的最优策略在很大程度上取决于其风险偏好和训练环境的底层模型动态。这两方面会影响代理在面对测试环境时做出知情且时间一致的决策的能力。在这项工作中,我们设计了一个解决鲁棒风险感知 RL 问题的框架,在这个框架中,我们用一类动态鲁棒失真风险度量来同时考虑环境的不确定性和风险。鲁棒性是通过在一个围绕参考模型的 Wasserstein 球内考虑所有模型而引入的。我们利用严格一致的评分函数,使用神经网络估算此类动态稳健风险度量,使用扭曲风险度量的量子表示法推导出政策梯度公式,并构建了一种行为批判算法来解决这类稳健风险感知 RL 问题。我们在一个投资组合分配实例中演示了我们算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信