FreeMark: A Non-Invasive White-Box Watermarking for Deep Neural Networks

Yuzhang Chen, Jiangnan Zhu, Yujie Gu, Minoru Kuribayashi, Kouichi Sakurai
{"title":"FreeMark: A Non-Invasive White-Box Watermarking for Deep Neural Networks","authors":"Yuzhang Chen, Jiangnan Zhu, Yujie Gu, Minoru Kuribayashi, Kouichi Sakurai","doi":"arxiv-2409.09996","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have achieved significant success in real-world\napplications. However, safeguarding their intellectual property (IP) remains\nextremely challenging. Existing DNN watermarking for IP protection often\nrequire modifying DNN models, which reduces model performance and limits their\npracticality. This paper introduces FreeMark, a novel DNN watermarking framework that\nleverages cryptographic principles without altering the original host DNN\nmodel, thereby avoiding any reduction in model performance. Unlike traditional\nDNN watermarking methods, FreeMark innovatively generates secret keys from a\npre-generated watermark vector and the host model using gradient descent. These\nsecret keys, used to extract watermark from the model's activation values, are\nsecurely stored with a trusted third party, enabling reliable watermark\nextraction from suspect models. Extensive experiments demonstrate that FreeMark\neffectively resists various watermark removal attacks while maintaining high\nwatermark capacity.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNs) have achieved significant success in real-world applications. However, safeguarding their intellectual property (IP) remains extremely challenging. Existing DNN watermarking for IP protection often require modifying DNN models, which reduces model performance and limits their practicality. This paper introduces FreeMark, a novel DNN watermarking framework that leverages cryptographic principles without altering the original host DNN model, thereby avoiding any reduction in model performance. Unlike traditional DNN watermarking methods, FreeMark innovatively generates secret keys from a pre-generated watermark vector and the host model using gradient descent. These secret keys, used to extract watermark from the model's activation values, are securely stored with a trusted third party, enabling reliable watermark extraction from suspect models. Extensive experiments demonstrate that FreeMark effectively resists various watermark removal attacks while maintaining high watermark capacity.
FreeMark:用于深度神经网络的非侵入式白盒水印技术
深度神经网络(DNN)在现实世界的应用中取得了巨大成功。然而,保护其知识产权(IP)仍然极具挑战性。现有的用于知识产权保护的 DNN 水印通常需要修改 DNN 模型,这降低了模型性能,限制了其实用性。本文介绍的 FreeMark 是一种新颖的 DNN 水印框架,它利用加密原理而不改变原始主机 DNN 模型,从而避免了模型性能的降低。与传统的 DNN 水印方法不同,FreeMark 创新性地使用梯度下降法,从预先生成的水印向量和主机模型中生成秘钥。这些秘钥用于从模型的激活值中提取水印,并安全地存储在受信任的第三方,从而可以从可疑模型中可靠地提取水印。大量实验证明,FreeMarke 能有效抵御各种水印去除攻击,同时保持较高的水印容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信