Monte Carlo Methods in the Manifold of Hartree-Fock-Bogoliubov Wave Functions

Ettore Vitali, Peter Rosenberg, Shiwei Zhang
{"title":"Monte Carlo Methods in the Manifold of Hartree-Fock-Bogoliubov Wave Functions","authors":"Ettore Vitali, Peter Rosenberg, Shiwei Zhang","doi":"arxiv-2409.11571","DOIUrl":null,"url":null,"abstract":"We explore the possibility to implement random walks in the manifold of\nHartree-Fock-Bogoliubov wave functions. The goal is to extend state-of-the-art\nquantum Monte Carlo approaches, in particular the constrained-path\nauxiliary-field quantum Monte Carlo technique, to systems where finite pairing\norder parameters or complex pairing mechanisms, e.g.,\nFulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing or triplet pairing, may be\nexpected. Leveraging the flexibility to define a vacuum state tailored to the\nphysical problem, we discuss a method to use imaginary-time evolution of\nHartree-Fock-Bogoliubov states to compute ground state correlations, extending\nbeyond situations spanned by current formalisms. Illustrative examples are\nprovided.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the possibility to implement random walks in the manifold of Hartree-Fock-Bogoliubov wave functions. The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms, e.g., Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing or triplet pairing, may be expected. Leveraging the flexibility to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of Hartree-Fock-Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current formalisms. Illustrative examples are provided.
哈特里-福克-波哥留布夫波函数漫域中的蒙特卡罗方法
我们探索了在哈特里-福克-波哥留布夫波函数流形中实现随机漫步的可能性。我们的目标是将最先进的量子蒙特卡洛方法,特别是受约束的帕塔奥克斯场量子蒙特卡洛技术,扩展到可能会出现有限配对阶参数或复杂配对机制(如富尔德-费雷尔-拉金-奥夫钦尼科夫(FFLO)配对或三重配对)的系统。我们讨论了一种利用哈特里-福克-波哥留布夫状态的虚时演化来计算基态相关性的方法。我们还提供了示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信