Computing the $\mathbb{Z}_2$ Invariant in Two-Dimensional Strongly-Correlated Systems

Sounak Sinha, Barry Bradlyn
{"title":"Computing the $\\mathbb{Z}_2$ Invariant in Two-Dimensional Strongly-Correlated Systems","authors":"Sounak Sinha, Barry Bradlyn","doi":"arxiv-2409.12120","DOIUrl":null,"url":null,"abstract":"We show that the two-dimensional $\\mathbb{Z}_2$ invariant for time-reversal\ninvariant insulators can be formulated in terms of the boundary-condition\ndependence of the ground state wavefunction for both non-interacting and\nstrongly-correlated insulators. By introducing a family of quasi-single\nparticle states associated to the many-body ground state of an insulator, we\nshow that the $\\mathbb{Z}_2$ invariant can be expressed as the integral of a\ncertain Berry connection over half the space of boundary conditions, providing\nan alternative expression to the formulations that appear in [Lee et al., Phys.\nRev. Lett. $\\textbf{100}$, 186807 (2008)]. We show the equivalence of the\ndifferent many-body formulations of the invariant, and show how they reduce to\nknown band-theoretic results for Slater determinant ground states. Finally, we\napply our results to analytically calculate the invariant for the Kane-Mele\nmodel with nonlocal (orbital) Hatsugai-Kohmoto (HK) interactions. This\nrigorously establishes the topological nontriviality of the Kane-Mele model\nwith HK interactions, and represents one of the few exact calculations of the\n$\\mathbb{Z}_2$ invariant for a strongly-interacting system.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"abs/2206.05846 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the two-dimensional $\mathbb{Z}_2$ invariant for time-reversal invariant insulators can be formulated in terms of the boundary-condition dependence of the ground state wavefunction for both non-interacting and strongly-correlated insulators. By introducing a family of quasi-single particle states associated to the many-body ground state of an insulator, we show that the $\mathbb{Z}_2$ invariant can be expressed as the integral of a certain Berry connection over half the space of boundary conditions, providing an alternative expression to the formulations that appear in [Lee et al., Phys. Rev. Lett. $\textbf{100}$, 186807 (2008)]. We show the equivalence of the different many-body formulations of the invariant, and show how they reduce to known band-theoretic results for Slater determinant ground states. Finally, we apply our results to analytically calculate the invariant for the Kane-Mele model with nonlocal (orbital) Hatsugai-Kohmoto (HK) interactions. This rigorously establishes the topological nontriviality of the Kane-Mele model with HK interactions, and represents one of the few exact calculations of the $\mathbb{Z}_2$ invariant for a strongly-interacting system.
计算二维强相关系统的 $\mathbb{Z}_2$ 不变量
我们证明,时间反向绝缘体的二维 $\mathbb{Z}_2$ 不变量可以用非相互作用绝缘体和强相关绝缘体的基态波函数的边界条件依赖性来表述。通过引入与绝缘体的多体基态相关的准单粒子态族,我们证明了$\mathbb{Z}_2$不变式可以表示为特定贝里连接在一半边界条件空间上的积分,从而提供了[Lee等,Phys.Rev.Lett. $\textbf{100}$, 186807 (2008)]中的表述之外的另一种表述。我们展示了不变量的不同多体公式的等价性,并展示了它们如何还原了已知的斯莱特行列式基态的带论结果。最后,我们运用我们的结果分析计算了具有非局部(轨道)初回-高本(HK)相互作用的 Kane-Melemodel 的不变量。这有力地确立了具有 HK 相互作用的 Kane-Mele 模型的拓扑非琐碎性,是为数不多的精确计算强相互作用系统的 $/mathbb{Z}_2$ 不变量的方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信