Topological Tensor Eigenvalue Theorems in Data Fusion

Ronald Katende
{"title":"Topological Tensor Eigenvalue Theorems in Data Fusion","authors":"Ronald Katende","doi":"arxiv-2409.09392","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework for tensor eigenvalue analysis in the\ncontext of multi-modal data fusion, leveraging topological invariants such as\nBetti numbers. While traditional approaches to tensor eigenvalues rely on\nalgebraic extensions of matrix theory, this work provides a topological\nperspective that enriches the understanding of tensor structures. By\nestablishing new theorems linking eigenvalues to topological features, the\nproposed framework offers deeper insights into the latent structure of data,\nenhancing both interpretability and robustness. Applications to data fusion\nillustrate the theoretical and practical significance of the approach,\ndemonstrating its potential for broad impact across machine learning and data\nscience domains.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel framework for tensor eigenvalue analysis in the context of multi-modal data fusion, leveraging topological invariants such as Betti numbers. While traditional approaches to tensor eigenvalues rely on algebraic extensions of matrix theory, this work provides a topological perspective that enriches the understanding of tensor structures. By establishing new theorems linking eigenvalues to topological features, the proposed framework offers deeper insights into the latent structure of data, enhancing both interpretability and robustness. Applications to data fusion illustrate the theoretical and practical significance of the approach, demonstrating its potential for broad impact across machine learning and data science domains.
数据融合中的拓扑张量特征值定理
本文介绍了在多模态数据融合背景下利用贝蒂数等拓扑不变式进行张量特征值分析的新框架。传统的张量特征值分析方法依赖于矩阵理论的代数扩展,而本文则提供了拓扑视角,丰富了对张量结构的理解。通过建立将特征值与拓扑特征联系起来的新定理,所提出的框架为数据的潜在结构提供了更深入的见解,增强了可解释性和鲁棒性。数据融合的应用证明了这种方法的理论和实践意义,展示了它在机器学习和数据科学领域产生广泛影响的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信