Latent mixed-effect models for high-dimensional longitudinal data

Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki
{"title":"Latent mixed-effect models for high-dimensional longitudinal data","authors":"Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki","doi":"arxiv-2409.11008","DOIUrl":null,"url":null,"abstract":"Modelling longitudinal data is an important yet challenging task. These\ndatasets can be high-dimensional, contain non-linear effects and time-varying\ncovariates. Gaussian process (GP) prior-based variational autoencoders (VAEs)\nhave emerged as a promising approach due to their ability to model time-series\ndata. However, they are costly to train and struggle to fully exploit the rich\ncovariates characteristic of longitudinal data, making them difficult for\npractitioners to use effectively. In this work, we leverage linear mixed models\n(LMMs) and amortized variational inference to provide conditional priors for\nVAEs, and propose LMM-VAE, a scalable, interpretable and identifiable model. We\nhighlight theoretical connections between it and GP-based techniques, providing\na unified framework for this class of methods. Our proposal performs\ncompetitively compared to existing approaches across simulated and real-world\ndatasets.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling longitudinal data is an important yet challenging task. These datasets can be high-dimensional, contain non-linear effects and time-varying covariates. Gaussian process (GP) prior-based variational autoencoders (VAEs) have emerged as a promising approach due to their ability to model time-series data. However, they are costly to train and struggle to fully exploit the rich covariates characteristic of longitudinal data, making them difficult for practitioners to use effectively. In this work, we leverage linear mixed models (LMMs) and amortized variational inference to provide conditional priors for VAEs, and propose LMM-VAE, a scalable, interpretable and identifiable model. We highlight theoretical connections between it and GP-based techniques, providing a unified framework for this class of methods. Our proposal performs competitively compared to existing approaches across simulated and real-world datasets.
高维纵向数据的潜在混合效应模型
建立纵向数据模型是一项重要而又具有挑战性的任务。这些数据集可能是高维数据,包含非线性效应和时变变量。基于高斯过程(GP)先验的变异自动编码器(VAE)因其能够对时间序列数据建模而成为一种很有前途的方法。然而,它们的训练成本很高,而且难以充分利用纵向数据所特有的丰富变量,因此实践者很难有效地使用它们。在这项工作中,我们利用线性混合模型(LMMs)和摊销变异推理(amortized variational inference)为VAEs提供条件先验,并提出了LMM-VAE--一种可扩展、可解释和可识别的模型。我们强调了它与基于 GP 的技术之间的理论联系,为这类方法提供了一个统一的框架。与现有方法相比,我们的建议在模拟和真实世界数据集上的表现极具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信