On the generalization ability of coarse-grained molecular dynamics models for non-equilibrium processes

Liyao Lyu, Huan Lei
{"title":"On the generalization ability of coarse-grained molecular dynamics models for non-equilibrium processes","authors":"Liyao Lyu, Huan Lei","doi":"arxiv-2409.11519","DOIUrl":null,"url":null,"abstract":"One essential goal of constructing coarse-grained molecular dynamics (CGMD)\nmodels is to accurately predict non-equilibrium processes beyond the atomistic\nscale. While a CG model can be constructed by projecting the full dynamics onto\na set of resolved variables, the dynamics of the CG variables can recover the\nfull dynamics only when the conditional distribution of the unresolved\nvariables is close to the one associated with the particular projection\noperator. In particular, the model's applicability to various non-equilibrium\nprocesses is generally unwarranted due to the inconsistency in the conditional\ndistribution. Here, we present a data-driven approach for constructing CGMD\nmodels that retain certain generalization ability for non-equilibrium\nprocesses. Unlike the conventional CG models based on pre-selected CG variables\n(e.g., the center of mass), the present CG model seeks a set of auxiliary CG\nvariables based on the time-lagged independent component analysis to minimize\nthe entropy contribution of the unresolved variables. This ensures the\ndistribution of the unresolved variables under a broad range of non-equilibrium\nconditions approaches the one under equilibrium. Numerical results of a polymer\nmelt system demonstrate the significance of this broadly-overlooked metric for\nthe model's generalization ability, and the effectiveness of the present CG\nmodel for predicting the complex viscoelastic responses under various\nnon-equilibrium flows.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One essential goal of constructing coarse-grained molecular dynamics (CGMD) models is to accurately predict non-equilibrium processes beyond the atomistic scale. While a CG model can be constructed by projecting the full dynamics onto a set of resolved variables, the dynamics of the CG variables can recover the full dynamics only when the conditional distribution of the unresolved variables is close to the one associated with the particular projection operator. In particular, the model's applicability to various non-equilibrium processes is generally unwarranted due to the inconsistency in the conditional distribution. Here, we present a data-driven approach for constructing CGMD models that retain certain generalization ability for non-equilibrium processes. Unlike the conventional CG models based on pre-selected CG variables (e.g., the center of mass), the present CG model seeks a set of auxiliary CG variables based on the time-lagged independent component analysis to minimize the entropy contribution of the unresolved variables. This ensures the distribution of the unresolved variables under a broad range of non-equilibrium conditions approaches the one under equilibrium. Numerical results of a polymer melt system demonstrate the significance of this broadly-overlooked metric for the model's generalization ability, and the effectiveness of the present CG model for predicting the complex viscoelastic responses under various non-equilibrium flows.
论粗粒度分子动力学模型对非平衡态过程的泛化能力
构建粗粒度分子动力学(CGMD)模型的一个基本目标是准确预测原子尺度之外的非平衡过程。虽然粗粒度分子动力学模型可以通过将全动力学投影到一组解析变量来构建,但只有当未解析变量的条件分布接近于与特定投影操作符相关的条件分布时,粗粒度分子动力学变量的动力学才能恢复全动力学。特别是,由于条件分布的不一致性,该模型通常无法适用于各种非平衡过程。在这里,我们提出了一种数据驱动的方法来构建 CGMD 模型,该模型对非平衡过程保留了一定的泛化能力。与传统的基于预选 CG 变量(如质心)的 CG 模型不同,本 CG 模型基于时滞独立分量分析寻找一组辅助 CG 变量,以最小化未解决变量的熵贡献。这确保了未解决变量在各种非平衡条件下的分布接近平衡条件下的分布。聚合熔体系统的数值结果表明了这一被广泛忽视的指标对模型泛化能力的重要意义,以及本 CG 模型预测各种非平衡流动下复杂粘弹性响应的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信