Partially Observable Contextual Bandits with Linear Payoffs

Sihan Zeng, Sujay Bhatt, Alec Koppel, Sumitra Ganesh
{"title":"Partially Observable Contextual Bandits with Linear Payoffs","authors":"Sihan Zeng, Sujay Bhatt, Alec Koppel, Sumitra Ganesh","doi":"arxiv-2409.11521","DOIUrl":null,"url":null,"abstract":"The standard contextual bandit framework assumes fully observable and\nactionable contexts. In this work, we consider a new bandit setting with\npartially observable, correlated contexts and linear payoffs, motivated by the\napplications in finance where decision making is based on market information\nthat typically displays temporal correlation and is not fully observed. We make\nthe following contributions marrying ideas from statistical signal processing\nwith bandits: (i) We propose an algorithmic pipeline named EMKF-Bandit, which\nintegrates system identification, filtering, and classic contextual bandit\nalgorithms into an iterative method alternating between latent parameter\nestimation and decision making. (ii) We analyze EMKF-Bandit when we select\nThompson sampling as the bandit algorithm and show that it incurs a sub-linear\nregret under conditions on filtering. (iii) We conduct numerical simulations\nthat demonstrate the benefits and practical applicability of the proposed\npipeline.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The standard contextual bandit framework assumes fully observable and actionable contexts. In this work, we consider a new bandit setting with partially observable, correlated contexts and linear payoffs, motivated by the applications in finance where decision making is based on market information that typically displays temporal correlation and is not fully observed. We make the following contributions marrying ideas from statistical signal processing with bandits: (i) We propose an algorithmic pipeline named EMKF-Bandit, which integrates system identification, filtering, and classic contextual bandit algorithms into an iterative method alternating between latent parameter estimation and decision making. (ii) We analyze EMKF-Bandit when we select Thompson sampling as the bandit algorithm and show that it incurs a sub-linear regret under conditions on filtering. (iii) We conduct numerical simulations that demonstrate the benefits and practical applicability of the proposed pipeline.
线性报酬的部分可观测情境强盗游戏
标准的情境强盗框架假定情境是完全可观察和可操作的。在这项工作中,我们考虑了一种新的匪帮设置,这种设置具有部分可观测、相关的上下文和线性报酬,其灵感来自金融领域的应用,在这些应用中,决策是基于市场信息做出的,而市场信息通常显示出时间相关性,并且不完全可观测。我们将统计信号处理的思想与匪帮相结合,做出了以下贡献:(i) 我们提出了一种名为 EMKF-Bandit 的算法管道,它将系统识别、滤波和经典的上下文匪帮算法集成到一种在潜在参数估计和决策制定之间交替进行的迭代方法中。(ii) 我们分析了选择汤普森采样作为匪算法时的 EMKF-Bandit,结果表明,在滤波条件下,EMKF-Bandit 会产生亚线性遗憾。(iii) 我们进行了数值模拟,证明了拟议管道的优势和实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信