A point process approach for the classification of noisy calcium imaging data

Arianna Burzacchi, Nicoletta D'Angelo, David Payares-Garcia, Jorge Mateu
{"title":"A point process approach for the classification of noisy calcium imaging data","authors":"Arianna Burzacchi, Nicoletta D'Angelo, David Payares-Garcia, Jorge Mateu","doi":"arxiv-2409.10409","DOIUrl":null,"url":null,"abstract":"We study noisy calcium imaging data, with a focus on the classification of\nspike traces. As raw traces obscure the true temporal structure of neuron's\nactivity, we performed a tuned filtering of the calcium concentration using two\nmethods: a biophysical model and a kernel mapping. The former characterizes\nspike trains related to a particular triggering event, while the latter filters\nout the signal and refines the selection of the underlying neuronal response.\nTransitioning from traditional time series analysis to point process theory,\nthe study explores spike-time distance metrics and point pattern prototypes to\ndescribe repeated observations. We assume that the analyzed neuron's firing\nevents, i.e. spike occurrences, are temporal point process events. In\nparticular, the study aims to categorize 47 point patterns by depth, assuming\nthe similarity of spike occurrences within specific depth categories. The\nresults highlight the pivotal roles of depth and stimuli in discerning diverse\ntemporal structures of neuron firing events, confirming the point process\napproach based on prototype analysis is largely useful in the classification of\nspike traces.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study noisy calcium imaging data, with a focus on the classification of spike traces. As raw traces obscure the true temporal structure of neuron's activity, we performed a tuned filtering of the calcium concentration using two methods: a biophysical model and a kernel mapping. The former characterizes spike trains related to a particular triggering event, while the latter filters out the signal and refines the selection of the underlying neuronal response. Transitioning from traditional time series analysis to point process theory, the study explores spike-time distance metrics and point pattern prototypes to describe repeated observations. We assume that the analyzed neuron's firing events, i.e. spike occurrences, are temporal point process events. In particular, the study aims to categorize 47 point patterns by depth, assuming the similarity of spike occurrences within specific depth categories. The results highlight the pivotal roles of depth and stimuli in discerning diverse temporal structures of neuron firing events, confirming the point process approach based on prototype analysis is largely useful in the classification of spike traces.
对噪声钙成像数据进行分类的点过程方法
我们研究了噪声钙成像数据,重点是对尖峰迹线进行分类。由于原始踪迹模糊了神经元活动的真实时间结构,我们使用两种方法对钙浓度进行了调整过滤:生物物理模型和核映射。前者描述了与特定触发事件相关的尖峰序列,后者则滤除了信号并完善了对潜在神经元响应的选择。从传统的时间序列分析过渡到点过程理论,该研究探索了尖峰-时间距离度量和点模式原型,以描述重复观测。我们假设被分析神经元的发射事件(即尖峰发生)是时间点过程事件。具体而言,本研究旨在根据深度对 47 个点模式进行分类,并假设特定深度类别中的尖峰发生具有相似性。研究结果强调了深度和刺激在辨别神经元发射事件的不同时间结构中的关键作用,证实了基于原型分析的点过程方法在尖峰轨迹分类中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信