Three-Dimensional Moran Walk with Resets

Symmetry Pub Date : 2024-09-18 DOI:10.3390/sym16091222
Mohamed Abdelkader
{"title":"Three-Dimensional Moran Walk with Resets","authors":"Mohamed Abdelkader","doi":"10.3390/sym16091222","DOIUrl":null,"url":null,"abstract":"In this current paper, we propose to study a three-dimensional Moran model (Xn(1),Xn(2),Xn(3)), where each random walk (Xn(i))∈{1,2,3} increases by one unit or is reset to zero at each unit of time. We analyze the joint law of its final altitude Xn=max(Xn(1),Xn(2),Xn(3)) via the moment generating tools. Furthermore, we show that the limit distribution of each random walk follows a shifted geometric distribution with parameter 1−qi, and we analyze the maximum of these three walks, also giving explicit expressions for the mean and variance.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this current paper, we propose to study a three-dimensional Moran model (Xn(1),Xn(2),Xn(3)), where each random walk (Xn(i))∈{1,2,3} increases by one unit or is reset to zero at each unit of time. We analyze the joint law of its final altitude Xn=max(Xn(1),Xn(2),Xn(3)) via the moment generating tools. Furthermore, we show that the limit distribution of each random walk follows a shifted geometric distribution with parameter 1−qi, and we analyze the maximum of these three walks, also giving explicit expressions for the mean and variance.
带重置的三维莫兰步
在本文中,我们提出研究一个三维莫兰模型(Xn(1),Xn(2),Xn(3)),其中每个随机行走(Xn(i))∈{1,2,3}在每个时间单位增加一个单位或重置为零。我们通过矩生成工具分析其最终高度 Xn=max(Xn(1),Xn(2),Xn(3)) 的联合规律。此外,我们还证明了每种随机游走的极限分布都遵循参数为 1-qi 的移位几何分布,并分析了这三种游走的最大值,同时给出了均值和方差的明确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信