Agents in Software Engineering: Survey, Landscape, and Vision

Yanxian Huang, Wanjun Zhong, Ensheng Shi, Min Yang, Jiachi Chen, Hui Li, Yuchi Ma, Qianxiang Wang, Zibin Zheng, Yanlin Wang
{"title":"Agents in Software Engineering: Survey, Landscape, and Vision","authors":"Yanxian Huang, Wanjun Zhong, Ensheng Shi, Min Yang, Jiachi Chen, Hui Li, Yuchi Ma, Qianxiang Wang, Zibin Zheng, Yanlin Wang","doi":"arxiv-2409.09030","DOIUrl":null,"url":null,"abstract":"In recent years, Large Language Models (LLMs) have achieved remarkable\nsuccess and have been widely used in various downstream tasks, especially in\nthe tasks of the software engineering (SE) field. We find that many studies\ncombining LLMs with SE have employed the concept of agents either explicitly or\nimplicitly. However, there is a lack of an in-depth survey to sort out the\ndevelopment context of existing works, analyze how existing works combine the\nLLM-based agent technologies to optimize various tasks, and clarify the\nframework of LLM-based agents in SE. In this paper, we conduct the first survey\nof the studies on combining LLM-based agents with SE and present a framework of\nLLM-based agents in SE which includes three key modules: perception, memory,\nand action. We also summarize the current challenges in combining the two\nfields and propose future opportunities in response to existing challenges. We\nmaintain a GitHub repository of the related papers at:\nhttps://github.com/DeepSoftwareAnalytics/Awesome-Agent4SE.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Large Language Models (LLMs) have achieved remarkable success and have been widely used in various downstream tasks, especially in the tasks of the software engineering (SE) field. We find that many studies combining LLMs with SE have employed the concept of agents either explicitly or implicitly. However, there is a lack of an in-depth survey to sort out the development context of existing works, analyze how existing works combine the LLM-based agent technologies to optimize various tasks, and clarify the framework of LLM-based agents in SE. In this paper, we conduct the first survey of the studies on combining LLM-based agents with SE and present a framework of LLM-based agents in SE which includes three key modules: perception, memory, and action. We also summarize the current challenges in combining the two fields and propose future opportunities in response to existing challenges. We maintain a GitHub repository of the related papers at: https://github.com/DeepSoftwareAnalytics/Awesome-Agent4SE.
软件工程中的代理:调查、景观和愿景
近年来,大型语言模型(LLM)取得了显著的成就,并被广泛应用于各种下游任务,尤其是软件工程(SE)领域的任务。我们发现,许多将 LLM 与 SE 结合起来的研究都或明或暗地使用了代理的概念。然而,目前还缺乏深入的调查来梳理现有研究的发展脉络,分析现有研究如何结合基于 LLM 的代理技术来优化各种任务,并阐明基于 LLM 的代理在 SE 中的框架。在本文中,我们首次对基于 LLM 的代理与 SE 的结合研究进行了调查,并提出了基于 LLM 的代理在 SE 中的框架,其中包括三个关键模块:感知、记忆和行动。我们还总结了当前将这两个领域结合起来所面临的挑战,并针对现有挑战提出了未来的机遇。我们在 GitHub 上建立了一个相关论文库:https://github.com/DeepSoftwareAnalytics/Awesome-Agent4SE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信