AutoSpec: Automated Generation of Neural Network Specifications

Shuowei Jin, Francis Y. Yan, Cheng Tan, Anuj Kalia, Xenofon Foukas, Z. Morley Mao
{"title":"AutoSpec: Automated Generation of Neural Network Specifications","authors":"Shuowei Jin, Francis Y. Yan, Cheng Tan, Anuj Kalia, Xenofon Foukas, Z. Morley Mao","doi":"arxiv-2409.10897","DOIUrl":null,"url":null,"abstract":"The increasing adoption of neural networks in learning-augmented systems\nhighlights the importance of model safety and robustness, particularly in\nsafety-critical domains. Despite progress in the formal verification of neural\nnetworks, current practices require users to manually define model\nspecifications -- properties that dictate expected model behavior in various\nscenarios. This manual process, however, is prone to human error, limited in\nscope, and time-consuming. In this paper, we introduce AutoSpec, the first\nframework to automatically generate comprehensive and accurate specifications\nfor neural networks in learning-augmented systems. We also propose the first\nset of metrics for assessing the accuracy and coverage of model specifications,\nestablishing a benchmark for future comparisons. Our evaluation across four\ndistinct applications shows that AutoSpec outperforms human-defined\nspecifications as well as two baseline approaches introduced in this study.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing adoption of neural networks in learning-augmented systems highlights the importance of model safety and robustness, particularly in safety-critical domains. Despite progress in the formal verification of neural networks, current practices require users to manually define model specifications -- properties that dictate expected model behavior in various scenarios. This manual process, however, is prone to human error, limited in scope, and time-consuming. In this paper, we introduce AutoSpec, the first framework to automatically generate comprehensive and accurate specifications for neural networks in learning-augmented systems. We also propose the first set of metrics for assessing the accuracy and coverage of model specifications, establishing a benchmark for future comparisons. Our evaluation across four distinct applications shows that AutoSpec outperforms human-defined specifications as well as two baseline approaches introduced in this study.
AutoSpec:自动生成神经网络规范
神经网络在学习增强系统中的应用日益增多,这凸显了模型安全性和鲁棒性的重要性,尤其是在安全关键领域。尽管在神经网络的形式验证方面取得了进展,但目前的做法仍要求用户手动定义模型规范--即在各种情况下决定预期模型行为的属性。然而,这种手动过程容易出现人为错误,范围有限,而且耗时。在本文中,我们介绍了 AutoSpec,它是第一个为学习增强系统中的神经网络自动生成全面准确规范的框架。我们还提出了第一套用于评估模型规范准确性和覆盖范围的指标,为未来的比较建立了基准。我们对四种不同应用的评估表明,AutoSpec 的性能优于人类定义的规范以及本研究中引入的两种基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信