{"title":"Spare parts provisioning strategy of warranty repair demands for capital-intensive products","authors":"Wei Xie, Zhaohan Liu, Kani Fu, Shuneng Zhong","doi":"10.1177/1748006x241272829","DOIUrl":null,"url":null,"abstract":"The inventory cost of stocking spare parts is a nonnegligible expenditure of providing after-sales service for the manufacturers making capital-intensive products, such as electric vehicles. Especially, for warranty repair service, it is important to manage the spare stock appropriately to satisfy the warranty claims of customers as well as reduce the associated inventory costs. In this paper, we investigate the spare parts inventory issue related to a critical component for under-warranty units of a product. In particular, under the free-replacement warranty policy, failed component will be replaced by a new one by consuming the spare stock. According to the field claim data, we find that the general trend of warranty claims is nonstationary, which will be affected by the product sales and under-warranty failures. Thus, we first propose a model to forecast the time-varying warranty repair demand by explicitly considering the randomness from two major sources, that is, product sales and under-warranty failures. Under the assumptions of Poisson sales process and exponential failure distribution, the closed-form expressions of mean and variance of cumulative warranty repair demand over time are obtained. Because the number of warranty claims in each period is a one-time data, the associated distribution information is unavailable. Then, based on the properties of the demand statistics, we derived a worst-case upper bound for the associated inventory cost and formulate a three-phase finite-horizon spare parts inventory model, which can be used to appropriately address the time-varying warranty claims. Finally, numerical experiments are conducted to investigate the key parameters affecting the optimal decisions where a case study based on real data is presented.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x241272829","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The inventory cost of stocking spare parts is a nonnegligible expenditure of providing after-sales service for the manufacturers making capital-intensive products, such as electric vehicles. Especially, for warranty repair service, it is important to manage the spare stock appropriately to satisfy the warranty claims of customers as well as reduce the associated inventory costs. In this paper, we investigate the spare parts inventory issue related to a critical component for under-warranty units of a product. In particular, under the free-replacement warranty policy, failed component will be replaced by a new one by consuming the spare stock. According to the field claim data, we find that the general trend of warranty claims is nonstationary, which will be affected by the product sales and under-warranty failures. Thus, we first propose a model to forecast the time-varying warranty repair demand by explicitly considering the randomness from two major sources, that is, product sales and under-warranty failures. Under the assumptions of Poisson sales process and exponential failure distribution, the closed-form expressions of mean and variance of cumulative warranty repair demand over time are obtained. Because the number of warranty claims in each period is a one-time data, the associated distribution information is unavailable. Then, based on the properties of the demand statistics, we derived a worst-case upper bound for the associated inventory cost and formulate a three-phase finite-horizon spare parts inventory model, which can be used to appropriately address the time-varying warranty claims. Finally, numerical experiments are conducted to investigate the key parameters affecting the optimal decisions where a case study based on real data is presented.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome