{"title":"Seeking Consensus on Subspaces in Federated Principal Component Analysis","authors":"Lei Wang, Xin Liu, Yin Zhang","doi":"10.1007/s10957-024-02523-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop an algorithm for federated principal component analysis (PCA) with emphases on both communication efficiency and data privacy. Generally speaking, federated PCA algorithms based on direct adaptations of classic iterative methods, such as simultaneous subspace iterations, are unable to preserve data privacy, while algorithms based on variable-splitting and consensus-seeking, such as alternating direction methods of multipliers (ADMM), lack in communication-efficiency. In this work, we propose a novel consensus-seeking formulation by equalizing subspaces spanned by splitting variables instead of equalizing variables themselves, thus greatly relaxing feasibility restrictions and allowing much faster convergence. Then we develop an ADMM-like algorithm with several special features to make it practically efficient, including a low-rank multiplier formula and techniques for treating subproblems. We establish that the proposed algorithm can better protect data privacy than classic methods adapted to the federated PCA setting. We derive convergence results, including a worst-case complexity estimate, for the proposed ADMM-like algorithm in the presence of the nonlinear equality constraints. Extensive empirical results are presented to show that the new algorithm, while enhancing data privacy, requires far fewer rounds of communication than existing peer algorithms for federated PCA.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"18 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02523-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop an algorithm for federated principal component analysis (PCA) with emphases on both communication efficiency and data privacy. Generally speaking, federated PCA algorithms based on direct adaptations of classic iterative methods, such as simultaneous subspace iterations, are unable to preserve data privacy, while algorithms based on variable-splitting and consensus-seeking, such as alternating direction methods of multipliers (ADMM), lack in communication-efficiency. In this work, we propose a novel consensus-seeking formulation by equalizing subspaces spanned by splitting variables instead of equalizing variables themselves, thus greatly relaxing feasibility restrictions and allowing much faster convergence. Then we develop an ADMM-like algorithm with several special features to make it practically efficient, including a low-rank multiplier formula and techniques for treating subproblems. We establish that the proposed algorithm can better protect data privacy than classic methods adapted to the federated PCA setting. We derive convergence results, including a worst-case complexity estimate, for the proposed ADMM-like algorithm in the presence of the nonlinear equality constraints. Extensive empirical results are presented to show that the new algorithm, while enhancing data privacy, requires far fewer rounds of communication than existing peer algorithms for federated PCA.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.